Xiaoxue Bai , Hao Qin , Jing Jie , Chunxiuli Li , Yunhe Zhang , Lei Song
{"title":"Plasma assisted fluorination of polyether ether ketone for stable antimicrobial performance","authors":"Xiaoxue Bai , Hao Qin , Jing Jie , Chunxiuli Li , Yunhe Zhang , Lei Song","doi":"10.1016/j.colcom.2024.100791","DOIUrl":null,"url":null,"abstract":"<div><p>Polyether ether ketone (PEEK) has been extensively used in healthcare due to its excellent mechanical properties, chemical resistance, and biocompatibility. Still, its weak bactericidal performance allows pathogenic bacteria to easily adhere to and proliferate on the PEEK surface. In this research, physical plasma treatment and chemical fluoridation have been combined to enable the PEEK surface with stable antibacterial performance. The characteristics of surface morphology, elemental composition, and hydrophilicity for the samples have been characterized. <em>In vitro</em> experiments reveal that the obtained PEEK surface exhibited great antimicrobial activity. Furthermore, the antimicrobial effect of the modified PEEK surface has shown almost no variation after 28 days of storage at room temperature and 4 h at 121 °C, confirming its excellent storage property and high-temperature stability. This study presents an efficient and practical method to enhance the cytocompatibility and the antimicrobial properties of the PEEK surface, making it a potential medical device material.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"61 ","pages":"Article 100791"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000268/pdfft?md5=302e02e6e371a5ceec633ed4b8354e55&pid=1-s2.0-S2215038224000268-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038224000268","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polyether ether ketone (PEEK) has been extensively used in healthcare due to its excellent mechanical properties, chemical resistance, and biocompatibility. Still, its weak bactericidal performance allows pathogenic bacteria to easily adhere to and proliferate on the PEEK surface. In this research, physical plasma treatment and chemical fluoridation have been combined to enable the PEEK surface with stable antibacterial performance. The characteristics of surface morphology, elemental composition, and hydrophilicity for the samples have been characterized. In vitro experiments reveal that the obtained PEEK surface exhibited great antimicrobial activity. Furthermore, the antimicrobial effect of the modified PEEK surface has shown almost no variation after 28 days of storage at room temperature and 4 h at 121 °C, confirming its excellent storage property and high-temperature stability. This study presents an efficient and practical method to enhance the cytocompatibility and the antimicrobial properties of the PEEK surface, making it a potential medical device material.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.