Unveiling the nanoscale architectures and dynamics of protein assembly with in situ atomic force microscopy

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaoyi Zhai, Sakshi Yadav Schmid, Zhixing Lin, Shuai Zhang, Fang Jiao
{"title":"Unveiling the nanoscale architectures and dynamics of protein assembly with in situ atomic force microscopy","authors":"Zhaoyi Zhai,&nbsp;Sakshi Yadav Schmid,&nbsp;Zhixing Lin,&nbsp;Shuai Zhang,&nbsp;Fang Jiao","doi":"10.1002/agt2.604","DOIUrl":null,"url":null,"abstract":"<p>Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter- and intra-molecular interactions. Understanding the structural and regulatory mechanisms underlying protein complex formation provides insights into biophysical processes. Furthermore, the principle of protein assembly gives guidelines for new biomimetic materials with potential applications in medicine, energy, and nanotechnology. Atomic force microscopy (AFM) is a powerful tool for investigating protein assembly and interactions across spatial scales (single molecules to cells) and temporal scales (milliseconds to days). It has significantly contributed to understanding nanoscale architectures, inter- and intra-molecular interactions, and regulatory elements that determine protein structures, assemblies, and functions. This review describes recent advancements in elucidating protein assemblies with in situ AFM. We discuss the structures, diffusions, interactions, and assembly dynamics of proteins captured by conventional and high-speed AFM in near-native environments and recent AFM developments in the multimodal high-resolution imaging, bimodal imaging, live cell imaging, and machine-learning-enhanced data analysis. These approaches show the significance of broadening the horizons of AFM and enable unprecedented explorations of protein assembly for biomaterial design and biomedical research.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"5 5","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.604","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter- and intra-molecular interactions. Understanding the structural and regulatory mechanisms underlying protein complex formation provides insights into biophysical processes. Furthermore, the principle of protein assembly gives guidelines for new biomimetic materials with potential applications in medicine, energy, and nanotechnology. Atomic force microscopy (AFM) is a powerful tool for investigating protein assembly and interactions across spatial scales (single molecules to cells) and temporal scales (milliseconds to days). It has significantly contributed to understanding nanoscale architectures, inter- and intra-molecular interactions, and regulatory elements that determine protein structures, assemblies, and functions. This review describes recent advancements in elucidating protein assemblies with in situ AFM. We discuss the structures, diffusions, interactions, and assembly dynamics of proteins captured by conventional and high-speed AFM in near-native environments and recent AFM developments in the multimodal high-resolution imaging, bimodal imaging, live cell imaging, and machine-learning-enhanced data analysis. These approaches show the significance of broadening the horizons of AFM and enable unprecedented explorations of protein assembly for biomaterial design and biomedical research.

Abstract Image

Abstract Image

用原位原子力显微镜揭示蛋白质组装的纳米级结构和动力学特性
蛋白质通过精确折叠与分子间和分子内的相互作用形成复合物,在不同的生物过程中发挥着重要作用。了解蛋白质复合物形成的结构和调控机制,有助于深入了解生物物理过程。此外,蛋白质组装原理还为新型仿生材料提供了指导,这些材料有望应用于医药、能源和纳米技术领域。原子力显微镜(AFM)是研究跨空间尺度(从单分子到细胞)和时间尺度(从毫秒到天)的蛋白质组装和相互作用的强大工具。它极大地促进了对纳米级结构、分子间和分子内相互作用以及决定蛋白质结构、组装和功能的调控要素的理解。本综述介绍了利用原位原子力显微镜阐明蛋白质组装的最新进展。我们讨论了传统和高速原子力显微镜在近原生环境中捕捉到的蛋白质的结构、扩散、相互作用和组装动力学,以及原子力显微镜在多模态高分辨率成像、双模态成像、活细胞成像和机器学习增强型数据分析方面的最新进展。这些方法显示了拓宽原子力显微镜视野的重要意义,为生物材料设计和生物医学研究提供了前所未有的蛋白质组装探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信