Michael W. Belovitch, Steven T. Brantley, Doug P. Aubrey
{"title":"Hydraulic redistribution supplies a major water subsidy and improves water status of understory species in a longleaf pine ecosystem","authors":"Michael W. Belovitch, Steven T. Brantley, Doug P. Aubrey","doi":"10.1002/eco.2680","DOIUrl":null,"url":null,"abstract":"<p>Hydraulic redistribution (HR) is a common phenomenon in water-limited ecosystems; however, it remains unclear how the volume of water transported via HR compares to other components of the hydrologic budget and how HR influences water availability for understory plant communities. In this study, we investigate the absolute and relative magnitude of HR on a forest water budget and identify potential impacts of this water subsidy to understory plant communities. We scaled tree-level estimates of transpiration and HR of three common tree species naturally occurring in a longleaf pine woodland with plot-level measurements of basal area to determine their magnitude at the stand scale. We trenched plots containing understory vegetation but devoid of mature trees and their connected roots to exclude HR subsidies to understory plant species. We analysed soil water isotopes and assessed leaf water potential (Ψ<sub>L</sub>) in trenched and control plots to determine if HR results in mixing of water among soil strata and improves understory plant moisture status. Water inputs from HR were equivalent to >30% of total rainfall for the site during the observation period and ~40% of total tree water uptake, depending on species. A stable isotope mixing model confirmed that soil water within HR-exposed plots was more similar to groundwater, whereas soil water within trenched plots was more similar to precipitation. Exclusion of HR via trenching decreased soil moisture and pre-dawn Ψ<sub>L</sub> for all understory species. These three lines of evidence suggest that HR from overstory trees redistributes a sizable portion of water from deeper to shallower soil profiles and that this water subsidy enhances understory plant water status.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2680","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2680","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydraulic redistribution (HR) is a common phenomenon in water-limited ecosystems; however, it remains unclear how the volume of water transported via HR compares to other components of the hydrologic budget and how HR influences water availability for understory plant communities. In this study, we investigate the absolute and relative magnitude of HR on a forest water budget and identify potential impacts of this water subsidy to understory plant communities. We scaled tree-level estimates of transpiration and HR of three common tree species naturally occurring in a longleaf pine woodland with plot-level measurements of basal area to determine their magnitude at the stand scale. We trenched plots containing understory vegetation but devoid of mature trees and their connected roots to exclude HR subsidies to understory plant species. We analysed soil water isotopes and assessed leaf water potential (ΨL) in trenched and control plots to determine if HR results in mixing of water among soil strata and improves understory plant moisture status. Water inputs from HR were equivalent to >30% of total rainfall for the site during the observation period and ~40% of total tree water uptake, depending on species. A stable isotope mixing model confirmed that soil water within HR-exposed plots was more similar to groundwater, whereas soil water within trenched plots was more similar to precipitation. Exclusion of HR via trenching decreased soil moisture and pre-dawn ΨL for all understory species. These three lines of evidence suggest that HR from overstory trees redistributes a sizable portion of water from deeper to shallower soil profiles and that this water subsidy enhances understory plant water status.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.