Continuous Biogas Slurry Substitution of Chemical Fertilizer with Wheat/Maize Straw Return Alters Surface and Subsoil Physicochemical and Aggregate Properties Differently
{"title":"Continuous Biogas Slurry Substitution of Chemical Fertilizer with Wheat/Maize Straw Return Alters Surface and Subsoil Physicochemical and Aggregate Properties Differently","authors":"F. F. Pan, S. Pan, J. Tang, B. H. Chen","doi":"10.1134/s1064229324600258","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Biogas slurry is increasingly adopted as a substitute for chemical fertilizer to improve soil fertility and control soil degradation. But little is known about its long-term effects on different soil layers. This study aims to test if biogas slurry substitution alters soil nutrients and aggregates differently in different layers and how the effects are influenced by straw return. A five-year field trial of a winter wheat–summer maize rotation was established to evaluate the effects of biogas slurry substitution [treatments: control without fertilizer (CK); chemical fertilizer (CF); 50% biogas slurry substitution (BSCF); 100% biogas slurry substitution (BS)] on two soil layers (0–20 and 20–40 cm) under equal N, P, and K fertilization in a Fluvisol. The result showed that compared with CK, fertilization was necessary to maintain soil available nitrogen (AN) and available potassium (AK) in the 0–20 cm layer. Also, fertilization had positive effects on soil EC, TN, and AP, especially in the topsoil. In terms of increasing the degree of water-stable macroaggregation, improving aggregate stability and reducing their crushing rates, CF was superior to biogas slurry substitution because of the greater accumulations of soil N, the most important physicochemical factor regulating soil macroaggregation and stability. The effects of biogas slurry substitution changed with soil layers. In surface soil, BD, water-stable macroaggregates, and aggregate stability significantly increased due to the positive regulatory effects of straw, AP, and EC; whereas in subsoil, they decreased. Inorganic fertilization with straw return functions well in soil structural degradation control and N fertility improvement, especially in the topsoil. Whereas in fields without straw return, biogas slurry substitution may be a feasible and economical choice to improve topsoil structure and also an excellent supplement to provide P and K.</p>","PeriodicalId":11892,"journal":{"name":"Eurasian Soil Science","volume":"32 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1134/s1064229324600258","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Biogas slurry is increasingly adopted as a substitute for chemical fertilizer to improve soil fertility and control soil degradation. But little is known about its long-term effects on different soil layers. This study aims to test if biogas slurry substitution alters soil nutrients and aggregates differently in different layers and how the effects are influenced by straw return. A five-year field trial of a winter wheat–summer maize rotation was established to evaluate the effects of biogas slurry substitution [treatments: control without fertilizer (CK); chemical fertilizer (CF); 50% biogas slurry substitution (BSCF); 100% biogas slurry substitution (BS)] on two soil layers (0–20 and 20–40 cm) under equal N, P, and K fertilization in a Fluvisol. The result showed that compared with CK, fertilization was necessary to maintain soil available nitrogen (AN) and available potassium (AK) in the 0–20 cm layer. Also, fertilization had positive effects on soil EC, TN, and AP, especially in the topsoil. In terms of increasing the degree of water-stable macroaggregation, improving aggregate stability and reducing their crushing rates, CF was superior to biogas slurry substitution because of the greater accumulations of soil N, the most important physicochemical factor regulating soil macroaggregation and stability. The effects of biogas slurry substitution changed with soil layers. In surface soil, BD, water-stable macroaggregates, and aggregate stability significantly increased due to the positive regulatory effects of straw, AP, and EC; whereas in subsoil, they decreased. Inorganic fertilization with straw return functions well in soil structural degradation control and N fertility improvement, especially in the topsoil. Whereas in fields without straw return, biogas slurry substitution may be a feasible and economical choice to improve topsoil structure and also an excellent supplement to provide P and K.
期刊介绍:
Eurasian Soil Science publishes original research papers on global and regional studies discussing both theoretical and experimental problems of genesis, geography, physics, chemistry, biology, fertility, management, conservation, and remediation of soils. Special sections are devoted to current news in the life of the International and Russian soil science societies and to the history of soil sciences.
Since 2000, the journal Agricultural Chemistry, the English version of the journal of the Russian Academy of Sciences Agrokhimiya, has been merged into the journal Eurasian Soil Science and is no longer published as a separate title.