Inversion of the two-data circular Radon transform centered on a curve on C ( R 2 ) ${\cal C}(\mathbf {R}^2)$

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rafik Aramyan
{"title":"Inversion of the two-data circular Radon transform centered on a curve on \n \n \n C\n (\n \n R\n 2\n \n )\n \n ${\\cal C}(\\mathbf {R}^2)$","authors":"Rafik Aramyan","doi":"10.1111/sapm.12722","DOIUrl":null,"url":null,"abstract":"<p>More often, in the mathematical literature, the injectivity of the spherical Radon transform (SRT) for compactly supported functions is considered. In this article, an additional condition, for the reconstruction of an unknown function <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>∈</mo>\n <mi>C</mi>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$f\\in C(\\mathbf {R}^2)$</annotation>\n </semantics></math> (the support can be noncompact) using the circular Radon transform (CRT) over circles centered on a smooth simple curve is found. It is proved that this problem is equivalent to the injectivity of a so-called two-data CRT over circles centered on a smooth curve (can be a segment). Also, we present an inversion formula of the transform that uses the local data of the circular integrals to reconstruct the unknown function. Such inversions are the mathematical base of modern modalities of imaging, such as thermo- and photoacoustic tomography and radar imaging, and have theoretical significance.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

More often, in the mathematical literature, the injectivity of the spherical Radon transform (SRT) for compactly supported functions is considered. In this article, an additional condition, for the reconstruction of an unknown function f C ( R 2 ) $f\in C(\mathbf {R}^2)$ (the support can be noncompact) using the circular Radon transform (CRT) over circles centered on a smooth simple curve is found. It is proved that this problem is equivalent to the injectivity of a so-called two-data CRT over circles centered on a smooth curve (can be a segment). Also, we present an inversion formula of the transform that uses the local data of the circular integrals to reconstruct the unknown function. Such inversions are the mathematical base of modern modalities of imaging, such as thermo- and photoacoustic tomography and radar imaging, and have theoretical significance.

以 C(R2)${cal C}(\mathbf {R}^2)$ 上的曲线为中心的双数据循环拉顿变换的反演
在数学文献中,球面拉顿变换(SRT)的注入性通常被认为是针对紧凑支撑函数的。在本文中,我们发现了一个额外的条件,即利用以光滑简单曲线为中心的圆上的圆形拉顿变换(CRT)重建未知函数(支撑可以是非紧凑的)。我们证明了这一问题等同于以光滑曲线(可以是线段)为中心的圆上的所谓双数据 CRT 的注入性。此外,我们还提出了利用圆积分的局部数据重建未知函数的变换反演公式。这种反演是现代成像模式的数学基础,如热声学和光声学层析成像以及雷达成像,具有重要的理论意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信