Sanjay K. S. Patel, Rahul K. Gupta, Karthikeyan K. Karuppanan, Deepak Kumar Padhi, Sampathkumar Ranganathan, Parasuraman Paramanantham, Jung-Kul Lee
{"title":"Nonsterile Process for Biohydrogen Production: Recent Updates, Challenges, and Opportunities","authors":"Sanjay K. S. Patel, Rahul K. Gupta, Karthikeyan K. Karuppanan, Deepak Kumar Padhi, Sampathkumar Ranganathan, Parasuraman Paramanantham, Jung-Kul Lee","doi":"10.1007/s12088-024-01319-1","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen (H<sub>2</sub>), a clean and versatile energy carrier, has recently gained significant attention as a potential solution for reducing carbon emissions and promoting sustainable energy systems. The yield and efficiency of the biological H<sub>2</sub> production process primarily depend on sterilization conditions. Various strategies, such as heat inactivation and membrane-based sterilization, have been used to achieve desirable yields via microbial fermentation. Almost every failed biotransformation process is linked to nonsterile conditions at any reaction stage. Therefore, the production of renewable biofuels as alternatives to fossil fuels is more attractive. Pure sugars have been widely documented as a costly feedstock for H<sub>2</sub> production under sterile conditions. Biotransformation under nonsterile conditions is more desirable for stable and sustainable operation. Low-cost feeds, such as biowaste, are considered suitable alternatives, but they require appropriate sterilization to overcome the limitations of inherited or contaminating microbes during H<sub>2</sub> production. This article describes the status of microbial fermentative processes for H<sub>2</sub> production under nonsterile conditions and discusses strategies to improve such processes for sustainable, cleaner production.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"4 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12088-024-01319-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen (H2), a clean and versatile energy carrier, has recently gained significant attention as a potential solution for reducing carbon emissions and promoting sustainable energy systems. The yield and efficiency of the biological H2 production process primarily depend on sterilization conditions. Various strategies, such as heat inactivation and membrane-based sterilization, have been used to achieve desirable yields via microbial fermentation. Almost every failed biotransformation process is linked to nonsterile conditions at any reaction stage. Therefore, the production of renewable biofuels as alternatives to fossil fuels is more attractive. Pure sugars have been widely documented as a costly feedstock for H2 production under sterile conditions. Biotransformation under nonsterile conditions is more desirable for stable and sustainable operation. Low-cost feeds, such as biowaste, are considered suitable alternatives, but they require appropriate sterilization to overcome the limitations of inherited or contaminating microbes during H2 production. This article describes the status of microbial fermentative processes for H2 production under nonsterile conditions and discusses strategies to improve such processes for sustainable, cleaner production.
期刊介绍:
Indian Journal of Microbiology is the official organ of the Association of Microbiologists of India (AMI). It publishes full-length papers, short communication reviews and mini reviews on all aspects of microbiological research, published quarterly (March, June, September and December). Areas of special interest include agricultural, food, environmental, industrial, medical, pharmaceutical, veterinary and molecular microbiology.