Organic Mixed Ionic-Electronic Conductors as Multi-Functional Binders for Energy-Dense Carbon-Free Solid-State Batteries

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Dr. Liyi Zhao, Dr. Qingyu Dong, Ms. Xuechun Wang, Ms. Zhiyun Li, Dr. Hui Shao, Prof. Yanbin Shen, Prof. Liwei Chen
{"title":"Organic Mixed Ionic-Electronic Conductors as Multi-Functional Binders for Energy-Dense Carbon-Free Solid-State Batteries","authors":"Dr. Liyi Zhao,&nbsp;Dr. Qingyu Dong,&nbsp;Ms. Xuechun Wang,&nbsp;Ms. Zhiyun Li,&nbsp;Dr. Hui Shao,&nbsp;Prof. Yanbin Shen,&nbsp;Prof. Liwei Chen","doi":"10.1002/batt.202400132","DOIUrl":null,"url":null,"abstract":"<p>Solid-state lithium-metal batteries are considered as one of the most promising candidates for next-generation energy storage devices with high energy density and enhanced safety. Great efforts have been made to design solid-state electrolytes with enhanced ionic conductivity and to protect the electrochemical interface of the lithium anode. However, the obstruction of ionic-electronic transport within the cathode remains as another key challenge that needs to be addressed for the practical application of solid-state batteries. Here, we prepared organic mixed ionic-electronic conductors (OMIECs) by in-situ co-polymerization of three organic monomers (boron-type crosslinker, ionic liquid, and sulfolene) in the network of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). The as-prepared OMIECs show an electronic conductivity up to 33.6 S cm<sup>−1</sup> and ionic conductivity of 1.7×10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C, and also binder functionality, providing a combined path for Li<sup>+</sup>/e<sup>−</sup> transport in cathodes and maintaining mechanical/(electro−)chemical stability. As a result, solid-state cathodes composed of 90.0 wt % active materials and only 10.0 wt % OMIECs display exceptional electrochemical characteristics at 30 °C, including high C-rate capabilities and prolonged cycle life. This novel design of all-in-one OMIECs for carbon-free cathodes demonstrates a promising strategy for developing multifunctional additives for high-performance solid-state batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 8","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400132","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state lithium-metal batteries are considered as one of the most promising candidates for next-generation energy storage devices with high energy density and enhanced safety. Great efforts have been made to design solid-state electrolytes with enhanced ionic conductivity and to protect the electrochemical interface of the lithium anode. However, the obstruction of ionic-electronic transport within the cathode remains as another key challenge that needs to be addressed for the practical application of solid-state batteries. Here, we prepared organic mixed ionic-electronic conductors (OMIECs) by in-situ co-polymerization of three organic monomers (boron-type crosslinker, ionic liquid, and sulfolene) in the network of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). The as-prepared OMIECs show an electronic conductivity up to 33.6 S cm−1 and ionic conductivity of 1.7×10−4 S cm−1 at 30 °C, and also binder functionality, providing a combined path for Li+/e transport in cathodes and maintaining mechanical/(electro−)chemical stability. As a result, solid-state cathodes composed of 90.0 wt % active materials and only 10.0 wt % OMIECs display exceptional electrochemical characteristics at 30 °C, including high C-rate capabilities and prolonged cycle life. This novel design of all-in-one OMIECs for carbon-free cathodes demonstrates a promising strategy for developing multifunctional additives for high-performance solid-state batteries.

Abstract Image

作为高能量无碳固态电池多功能粘合剂的有机混合离子电子导体
固态锂金属电池被认为是下一代储能设备中最有前途的候选产品之一,具有高能量密度和更高的安全性。人们一直在努力设计具有更强离子传导性的固态电解质,并保护锂阳极的电化学界面。然而,阴极内离子电子传输的阻碍仍然是固态电池实际应用中需要解决的另一个关键挑战。在这里,我们通过在聚(3,4-亚乙二氧基噻吩)/聚(4-苯乙烯磺酸盐)网络中原位共聚三种有机单体(硼型交联剂、离子液体和亚砜),制备了有机混合离子电子导体(OMIECs)。所制备的 OMIEC 在 30 °C 时的电子电导率高达 33.6 S cm-1,离子电导率为 1.7×10-4 S cm-1,同时还具有粘合剂功能,为阴极中 Li+/e- 的传输提供了一条综合路径,并保持了机械/(电)化学稳定性。因此,由 90.0 wt% 的活性材料和仅 10.0 wt% 的 OMIEC 组成的固态阴极在 30 °C 下显示出卓越的电化学特性,包括高 C 率能力和更长的循环寿命。这种用于无碳阴极的一体化 OMIECs 的新颖设计为开发高性能固态电池的多功能添加剂提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信