Platinum-nickel nanocrystals anchored on heteroatom-functionalized Ti3-xC2Ty MXene 3D porous architecture for electrocatalytic hydrogen evolution in alkaline electrolytes

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Ming Du , Xianzhi Yang , Chuye Quan , Huajie Huang , Wei Chen , Jianping Yang , Jian Zhang , Xinbao Zhu , Xing'ao Li
{"title":"Platinum-nickel nanocrystals anchored on heteroatom-functionalized Ti3-xC2Ty MXene 3D porous architecture for electrocatalytic hydrogen evolution in alkaline electrolytes","authors":"Ming Du ,&nbsp;Xianzhi Yang ,&nbsp;Chuye Quan ,&nbsp;Huajie Huang ,&nbsp;Wei Chen ,&nbsp;Jianping Yang ,&nbsp;Jian Zhang ,&nbsp;Xinbao Zhu ,&nbsp;Xing'ao Li","doi":"10.1016/j.jtice.2024.105580","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Rational design and construction of efficient electrocatalysts are crucial for enhancing the activity and stability of the hydrogen evolution reaction (HER) in alkaline electrolytes.</p></div><div><h3>Methods</h3><p>Herein, heteroatom (phosphorus and sulfur)-functionalized and self-adapting Ti<sup>3+</sup> species defect decorated Ti<sub>3-x</sub>C<sub>2</sub>T<sub>y</sub> MXene (PS-TCT) with 3D porous architecture for anchoring platinum-nickel (PtNi) bimetallic nanocrystals for alkaline electrocatalytic HER. Experimental and theoretical studies have shown that the heteroatoms delicately modulated the electronic configuration of MXene to optimize the adsorption capacity of the reaction intermediates. The 3D porous spatial configuration of PS-TCT with abundant Ti<sup>3+</sup> species defect endowed an efficient channel for charge transfer and sufficient catalytically active sites, thus facilitating fast dynamics and long-term stability. Additionally, the strong bimetal-substrate interfacial interaction (Pt-S bonding) between PtNi and PS-TCT established an electron directional transport channel, thus achieving valid and stable interfacial electron transport.</p></div><div><h3>Significant findings</h3><p>Consequently, the optimized PtNi@PS-TCT nanohybrids showed remarkable catalytic activity with low overpotentials of 56.1 mV at 10 mA cm<sup>−2</sup> and impressive Tafel slope of 81 mV dec<sup>−1</sup> for HER in alkaline electrolytes (1.0 M KOH), while exhibiting outstanding electrochemical stability. This work offers a constructive route for precisely constructing high-performance multifunctional composite electrocatalysts.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024002384","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Rational design and construction of efficient electrocatalysts are crucial for enhancing the activity and stability of the hydrogen evolution reaction (HER) in alkaline electrolytes.

Methods

Herein, heteroatom (phosphorus and sulfur)-functionalized and self-adapting Ti3+ species defect decorated Ti3-xC2Ty MXene (PS-TCT) with 3D porous architecture for anchoring platinum-nickel (PtNi) bimetallic nanocrystals for alkaline electrocatalytic HER. Experimental and theoretical studies have shown that the heteroatoms delicately modulated the electronic configuration of MXene to optimize the adsorption capacity of the reaction intermediates. The 3D porous spatial configuration of PS-TCT with abundant Ti3+ species defect endowed an efficient channel for charge transfer and sufficient catalytically active sites, thus facilitating fast dynamics and long-term stability. Additionally, the strong bimetal-substrate interfacial interaction (Pt-S bonding) between PtNi and PS-TCT established an electron directional transport channel, thus achieving valid and stable interfacial electron transport.

Significant findings

Consequently, the optimized PtNi@PS-TCT nanohybrids showed remarkable catalytic activity with low overpotentials of 56.1 mV at 10 mA cm−2 and impressive Tafel slope of 81 mV dec−1 for HER in alkaline electrolytes (1.0 M KOH), while exhibiting outstanding electrochemical stability. This work offers a constructive route for precisely constructing high-performance multifunctional composite electrocatalysts.

Abstract Image

Abstract Image

锚定在杂原子功能化 Ti3-xC2Ty MXene 三维多孔结构上的铂镍纳米晶体在碱性电解质中的电催化氢气进化
合理设计和构建高效电催化剂对于提高碱性电解质中氢进化反应(HER)的活性和稳定性至关重要。在此,杂原子(磷和硫)功能化和自适应 Ti 物种缺陷装饰了具有三维多孔结构的 TiCT MXene(PS-TCT),用于锚定铂镍(PtNi)双金属纳米晶体,以实现碱性电催化氢催化反应。实验和理论研究表明,杂原子微妙地调节了 MXene 的电子构型,从而优化了反应中间产物的吸附能力。PS-TCT 的三维多孔空间构型具有丰富的钛物种缺陷,为电荷转移提供了有效通道和充足的催化活性位点,从而促进了快速动力学和长期稳定性。此外,PtNi 和 PS-TCT 之间强烈的双金属-基底界面相互作用(Pt-S 键)建立了电子定向传输通道,从而实现了有效而稳定的界面电子传输。因此,优化后的 PtNi@PS-TCT 纳米杂化物在碱性电解质(1.0 M KOH)中对 HER 表现出显著的催化活性,10 mA cm 时过电位低至 56.1 mV,Tafel 斜率高达 81 mV dec,同时表现出出色的电化学稳定性。这项工作为精确构建高性能多功能复合电催化剂提供了一条建设性途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信