Petros Mandalis, Eva Chondrodima, Yannis Kontoulis, Nikos Pelekis, Yannis Theodoridis
{"title":"A transformer-based method for vessel traffic flow forecasting","authors":"Petros Mandalis, Eva Chondrodima, Yannis Kontoulis, Nikos Pelekis, Yannis Theodoridis","doi":"10.1007/s10707-024-00521-z","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the maritime domain has experienced tremendous growth due to the exploitation of big traffic data. Particular emphasis has been placed on deep learning methodologies for decision-making. Accurate Vessel Traffic Flow Forecasting (VTFF) is essential for optimizing navigation efficiency and proactively managing maritime operations. In this work, we present a distributed Unified Approach for VTFF (dUA-VTFF), which employs Transformer models and leverages the Apache Spark big data distributed processing framework to learn from historical maritime data and predict future traffic flows over a time horizon of up to 30 min. Particularly, dUA-VTFF leverages vessel timestamped locations along with future vessel locations produced by a Vessel Route Forecasting model. These data are arranged into a spatiotemporal grid to formulate the traffic flows. Subsequently, through the Apache Spark, each grid cell is allocated to a computing node, where appropriately designed Transformer-based models forecast traffic flows in a distributed framework. Experimental evaluations conducted on real Automatic Identification System (AIS) datasets demonstrate the improved efficiency of the dUA-VTFF compared to state-of-the-art traffic flow forecasting methods.</p>","PeriodicalId":55109,"journal":{"name":"Geoinformatica","volume":"70 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoinformatica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10707-024-00521-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the maritime domain has experienced tremendous growth due to the exploitation of big traffic data. Particular emphasis has been placed on deep learning methodologies for decision-making. Accurate Vessel Traffic Flow Forecasting (VTFF) is essential for optimizing navigation efficiency and proactively managing maritime operations. In this work, we present a distributed Unified Approach for VTFF (dUA-VTFF), which employs Transformer models and leverages the Apache Spark big data distributed processing framework to learn from historical maritime data and predict future traffic flows over a time horizon of up to 30 min. Particularly, dUA-VTFF leverages vessel timestamped locations along with future vessel locations produced by a Vessel Route Forecasting model. These data are arranged into a spatiotemporal grid to formulate the traffic flows. Subsequently, through the Apache Spark, each grid cell is allocated to a computing node, where appropriately designed Transformer-based models forecast traffic flows in a distributed framework. Experimental evaluations conducted on real Automatic Identification System (AIS) datasets demonstrate the improved efficiency of the dUA-VTFF compared to state-of-the-art traffic flow forecasting methods.
期刊介绍:
GeoInformatica is located at the confluence of two rapidly advancing domains: Computer Science and Geographic Information Science; nowadays, Earth studies use more and more sophisticated computing theory and tools, and computer processing of Earth observations through Geographic Information Systems (GIS) attracts a great deal of attention from governmental, industrial and research worlds.
This journal aims to promote the most innovative results coming from the research in the field of computer science applied to geographic information systems. Thus, GeoInformatica provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of the use of computer science for spatial studies.