Hai Yan Xu , Guang Tao Fei , Shao Hui Xu , Wen Chao Chen , Shi Jia Li , Xin Feng Li , Hao Miao Ouyang
{"title":"Functional modification of polypropylene separators with solid electrolyte LATP and SiO2 coatings for lithium batteries","authors":"Hai Yan Xu , Guang Tao Fei , Shao Hui Xu , Wen Chao Chen , Shi Jia Li , Xin Feng Li , Hao Miao Ouyang","doi":"10.1016/j.ssi.2024.116603","DOIUrl":null,"url":null,"abstract":"<div><p>The separator is crucial to the performance and safety of the battery. This study prepared a polypropylene (PP) /solid electrolyte Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) /SiO<sub>2</sub> composite separator (PP/LATP/SiO<sub>2</sub>). The experimental results demonstrate significant enhancements in the electrolyte wettability and thermal stability of the separator. Furthermore, the lithium-ion transference number (<span><math><msup><mi>t</mi><mo>+</mo></msup></math></span>) has been raised from 0.22 to 0.56. In electrochemical performance tests, the lithium symmetric battery assembled with the PP/LATP/SiO<sub>2</sub> composite separator exhibits an exceptionally long cycle life, sustaining stable cycling for 900 h at a current density of 0.5 mA cm<sup>−2</sup>. This composite separator, combining the solid electrolyte and SiO<sub>2</sub> layer, effectively facilitates lithium-ion transport and reduces the occurrence of electrode side reactions, thereby enhancing the performance and safety of the battery.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"412 ","pages":"Article 116603"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001516","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The separator is crucial to the performance and safety of the battery. This study prepared a polypropylene (PP) /solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) /SiO2 composite separator (PP/LATP/SiO2). The experimental results demonstrate significant enhancements in the electrolyte wettability and thermal stability of the separator. Furthermore, the lithium-ion transference number () has been raised from 0.22 to 0.56. In electrochemical performance tests, the lithium symmetric battery assembled with the PP/LATP/SiO2 composite separator exhibits an exceptionally long cycle life, sustaining stable cycling for 900 h at a current density of 0.5 mA cm−2. This composite separator, combining the solid electrolyte and SiO2 layer, effectively facilitates lithium-ion transport and reduces the occurrence of electrode side reactions, thereby enhancing the performance and safety of the battery.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.