Amirreza Ardebili, Mohammad Hossein Alaei, Amir Kaveh, Jafar Eskandari Jam
{"title":"Permeability and mechanical properties of nanoclay/epoxy liner used in type IV liquid oxygen vessel: experimental and numerical study","authors":"Amirreza Ardebili, Mohammad Hossein Alaei, Amir Kaveh, Jafar Eskandari Jam","doi":"10.1007/s13726-024-01324-7","DOIUrl":null,"url":null,"abstract":"<div><p>Consideration of the permeability and safety aspects of liquid oxygen (LOX) storage is of particular importance, because oxygen leaks can break down spacecraft missions. In this study, the effect of adding nanoclay to epoxy resin on the bending and tensile capacities of a clay/epoxy nanocomposite for using as a liner in type IV LOX was investigated experimentally and statistically. Consequently, samples were initially made with different nanoclay contents (0.5%, 1%, 3%, and 5% all by weights) using two distinct dispersion processes (HSS and ultrasonic), then evaluated using bending, tensile, and permeability testing methods, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). In the optimal sample with 1% (weight) of nanoclay mixed with ultrasonic process, the permeability was reduced by 35%, the Young's modulus was improved by 3.5 times, and the toughness and fracture energy were increased by 3 times compared to the pure resin. However, all samples lost between 10 and 20% of their tensile strength due to the breakage of polymer chain links. Simulation findings revealed that at burst pressure, the tank with modified resin liner deforms four times less than PP and 50% more than PET without any rupture.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 10","pages":"1351 - 1367"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01324-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Consideration of the permeability and safety aspects of liquid oxygen (LOX) storage is of particular importance, because oxygen leaks can break down spacecraft missions. In this study, the effect of adding nanoclay to epoxy resin on the bending and tensile capacities of a clay/epoxy nanocomposite for using as a liner in type IV LOX was investigated experimentally and statistically. Consequently, samples were initially made with different nanoclay contents (0.5%, 1%, 3%, and 5% all by weights) using two distinct dispersion processes (HSS and ultrasonic), then evaluated using bending, tensile, and permeability testing methods, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). In the optimal sample with 1% (weight) of nanoclay mixed with ultrasonic process, the permeability was reduced by 35%, the Young's modulus was improved by 3.5 times, and the toughness and fracture energy were increased by 3 times compared to the pure resin. However, all samples lost between 10 and 20% of their tensile strength due to the breakage of polymer chain links. Simulation findings revealed that at burst pressure, the tank with modified resin liner deforms four times less than PP and 50% more than PET without any rupture.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.