Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2024-05-29 DOI:10.1002/eom2.12455
Gyeong G. Jeon, Da Seul Lee, Min Jun Choi, You-Hyun Seo, Shujuan Huang, Jong H. Kim, Seong Sik Shin, Jincheol Kim
{"title":"Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer","authors":"Gyeong G. Jeon,&nbsp;Da Seul Lee,&nbsp;Min Jun Choi,&nbsp;You-Hyun Seo,&nbsp;Shujuan Huang,&nbsp;Jong H. Kim,&nbsp;Seong Sik Shin,&nbsp;Jincheol Kim","doi":"10.1002/eom2.12455","DOIUrl":null,"url":null,"abstract":"<p>Indoor photovoltaics are limited by their inherently low-photogenerated carrier density, leading to heightened carrier recombination and adverse leakage currents compared with conventional solar cells operating under 1 sun condition. To address these problems, this work incorporates a porous insulating interlayer (Al<sub>2</sub>O<sub>3</sub>) in perovskite devices, which effectively mitigates recombination and parasitic leakage current. A systematic investigation of the relationship between shunt resistance, photocarrier generation, and recombination at different light intensities demonstrates the effectiveness of the alumina interlayer in perovskite solar cells under low-light conditions. Moreover, the practicability of the alumina interlayer was demonstrated through its successful implementation in a large-area perovskite solar module (PSM). With bandgap engineering, the optimized PSM achieves a remarkable power conversion efficiency of 33.5% and a record-breaking power density of 107.3 μW cm<sup>−2</sup> under 1000 lux illumination. These results underscore the potential of alumina interlayers in improving energy harvesting performance, particularly in low-light indoor environments.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12455","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor photovoltaics are limited by their inherently low-photogenerated carrier density, leading to heightened carrier recombination and adverse leakage currents compared with conventional solar cells operating under 1 sun condition. To address these problems, this work incorporates a porous insulating interlayer (Al2O3) in perovskite devices, which effectively mitigates recombination and parasitic leakage current. A systematic investigation of the relationship between shunt resistance, photocarrier generation, and recombination at different light intensities demonstrates the effectiveness of the alumina interlayer in perovskite solar cells under low-light conditions. Moreover, the practicability of the alumina interlayer was demonstrated through its successful implementation in a large-area perovskite solar module (PSM). With bandgap engineering, the optimized PSM achieves a remarkable power conversion efficiency of 33.5% and a record-breaking power density of 107.3 μW cm−2 under 1000 lux illumination. These results underscore the potential of alumina interlayers in improving energy harvesting performance, particularly in low-light indoor environments.

Abstract Image

Abstract Image

利用多孔氧化铝中间膜缓解室内过氧化物光伏组件中的寄生漏电流
室内光伏技术因其固有的低光生载流子密度而受到限制,与在日照条件下工作的传统太阳能电池相比,室内光伏技术会导致载流子高度重组和不利的漏电流。为了解决这些问题,这项研究在过氧化物设备中加入了多孔绝缘中间层(Al2O3),从而有效地缓解了载流子重组和寄生漏电流。对不同光照强度下并联电阻、光载流子生成和重组之间关系的系统研究表明,氧化铝中间膜在低光照条件下的包晶体太阳能电池中非常有效。此外,氧化铝中间膜在大面积透辉石太阳能模块(PSM)中的成功应用也证明了它的实用性。通过带隙工程,优化后的 PSM 在 1000 勒克斯照明条件下实现了 33.5% 的出色功率转换效率和 107.3 μW cm-2 的破纪录功率密度。这些结果凸显了氧化铝夹层在提高能量收集性能方面的潜力,尤其是在室内弱光环境下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信