{"title":"Theta functions, fourth moments of eigenforms and the sup-norm problem II","authors":"Ilya Khayutin, Paul D. Nelson, Raphael S. Steiner","doi":"10.1017/fmp.2024.9","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>f</jats:italic> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline1.png\"/> <jats:tex-math> $L^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-normalized holomorphic newform of weight <jats:italic>k</jats:italic> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline2.png\"/> <jats:tex-math> $\\Gamma _0(N) \\backslash \\mathbb {H}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:italic>N</jats:italic> squarefree or, more generally, on any hyperbolic surface <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline3.png\"/> <jats:tex-math> $\\Gamma \\backslash \\mathbb {H}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> attached to an Eichler order of squarefree level in an indefinite quaternion algebra over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline4.png\"/> <jats:tex-math> $\\mathbb {Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Denote by <jats:italic>V</jats:italic> the hyperbolic volume of said surface. We prove the sup-norm estimate <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_eqnu1.png\"/> <jats:tex-math> $$\\begin{align*}\\| \\Im(\\cdot)^{\\frac{k}{2}} f \\|_{\\infty} \\ll_{\\varepsilon} (k V)^{\\frac{1}{4}+\\varepsilon} \\end{align*}$$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> with absolute implied constant. For a cuspidal Maaß newform <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline5.png\"/> <jats:tex-math> $\\varphi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of eigenvalue <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_inline6.png\"/> <jats:tex-math> $\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on such a surface, we prove that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862400009X_eqnu2.png\"/> <jats:tex-math> $$\\begin{align*}\\|\\varphi \\|_{\\infty} \\ll_{\\lambda,\\varepsilon} V^{\\frac{1}{4}+\\varepsilon}. \\end{align*}$$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> We establish analogous estimates in the setting of definite quaternion algebras.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Let f be an $L^2$ -normalized holomorphic newform of weight k on $\Gamma _0(N) \backslash \mathbb {H}$ with N squarefree or, more generally, on any hyperbolic surface $\Gamma \backslash \mathbb {H}$ attached to an Eichler order of squarefree level in an indefinite quaternion algebra over $\mathbb {Q}$ . Denote by V the hyperbolic volume of said surface. We prove the sup-norm estimate $$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$ with absolute implied constant. For a cuspidal Maaß newform $\varphi $ of eigenvalue $\lambda $ on such a surface, we prove that $$\begin{align*}\|\varphi \|_{\infty} \ll_{\lambda,\varepsilon} V^{\frac{1}{4}+\varepsilon}. \end{align*}$$ We establish analogous estimates in the setting of definite quaternion algebras.