{"title":"Numerical study of plasma behavior in a disk-shaped noble gas MHD generator","authors":"Ork Kimsor, Yoshihiro Okuno","doi":"10.1002/ecj.12445","DOIUrl":null,"url":null,"abstract":"<p>Plasma behavior in cesium-seeded argon (Ar/Cs) and xenon-seeded argon (Ar/Xe) disk-shaped MHD generators are compared under almost the same working conditions using r-θ two-dimensional simulation. For both working gases, uniform plasma occurs at the optimum load resistance, and the power outputs are the same under an identical inlet ionization degree. For Ar/Cs, plasma is stable and uniform in the range of electron temperature of 4300–5800 K basically according to the linear perturbation theory. In the actual plasma in the MHD generator, however, the uniform plasma still can be maintained even at higher electron temperatures due to the low three-body recombination coefficient of Ar. For Ar/Xe, on the other hand, uniform plasma is maintained when the characteristic time of the electron number density is longer than the residence time of the working gas where the electron temperature is around 4300–8600 K, even though unstable plasma is suggested from the linear perturbation theory.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"107 2","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12445","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma behavior in cesium-seeded argon (Ar/Cs) and xenon-seeded argon (Ar/Xe) disk-shaped MHD generators are compared under almost the same working conditions using r-θ two-dimensional simulation. For both working gases, uniform plasma occurs at the optimum load resistance, and the power outputs are the same under an identical inlet ionization degree. For Ar/Cs, plasma is stable and uniform in the range of electron temperature of 4300–5800 K basically according to the linear perturbation theory. In the actual plasma in the MHD generator, however, the uniform plasma still can be maintained even at higher electron temperatures due to the low three-body recombination coefficient of Ar. For Ar/Xe, on the other hand, uniform plasma is maintained when the characteristic time of the electron number density is longer than the residence time of the working gas where the electron temperature is around 4300–8600 K, even though unstable plasma is suggested from the linear perturbation theory.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).