{"title":"The maximum number of maximum generalized 4-independent sets in trees","authors":"Pingshan Li, Min Xu","doi":"10.1002/jgt.23122","DOIUrl":null,"url":null,"abstract":"<p>A generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent set is a set of vertices such that the induced subgraph contains no trees with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-vertices, and the generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independence number is the cardinality of a maximum <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent set in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n </msup>\n </mrow>\n <annotation> ${2}^{\\frac{n-3}{2}}$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is odd, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${2}^{\\frac{n-2}{2}}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mi>n</mi>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mfrac>\n <mi>n</mi>\n <mn>3</mn>\n </mfrac>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${3}^{\\frac{n}{3}-1}+\\frac{n}{3}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>0</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 0\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${3}^{\\frac{n-1}{3}-1}+1$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>1</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 1\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>3</mn>\n <mrow>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mn>3</mn>\n </mfrac>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${3}^{\\frac{n-2}{3}-1}$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>2</mn>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mtext>mod 3</mtext>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 2\\unicode{x02007}(\\text{mod 3})$</annotation>\n </semantics></math> and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-independent sets in a tree for a general integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>. As applications, we show that the maximum number of generalized 4-independent sets in a tree of order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo> </mo>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\unicode{x02007}(n\\ge 4)$</annotation>\n </semantics></math> is\n\n </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A generalized -independent set is a set of vertices such that the induced subgraph contains no trees with -vertices, and the generalized -independence number is the cardinality of a maximum -independent set in . Zito proved that the maximum number of maximum generalized 2-independent sets in a tree of order is if is odd, and if is even. Tu et al. showed that the maximum number of maximum generalized 3-independent sets in a tree of order is if , and if , and if and they characterized all the extremal graphs. Inspired by these two nice results, we establish four structure theorems about maximum generalized -independent sets in a tree for a general integer . As applications, we show that the maximum number of generalized 4-independent sets in a tree of order is