Optimizing synthesis and application of an enhanced oil recovery agent: stability assessment of the optimized nanostructured PNIPAM/PS core–shell polymer using a developed DLVO-based model

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ramin Mohammadipour, Hossein Ali Akhlaghi Amiri, Ali Dashti, Seyed Farzan Tajbakhsh
{"title":"Optimizing synthesis and application of an enhanced oil recovery agent: stability assessment of the optimized nanostructured PNIPAM/PS core–shell polymer using a developed DLVO-based model","authors":"Ramin Mohammadipour,&nbsp;Hossein Ali Akhlaghi Amiri,&nbsp;Ali Dashti,&nbsp;Seyed Farzan Tajbakhsh","doi":"10.1007/s00396-024-05270-x","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the efficiency of hydrophilic polymers in oil reservoirs, a method encapsulates the polymer within a protective shell, safeguarding the core polymer and enabling controlled release in demanding, high-temperature conditions. Poly(N-isopropylacrylamide) nanoparticles are encapsulated with polystyrene shells through emulsion polymerization in this study. Varying the amounts of shell monmer and crosslinking agents resulted thick, sphere-shaped shells with homogeneous morphology, which protects the core polymer and enabling controlled release. Structural and morphological properties are characterized using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (H<sup>1</sup>NMR), dynamic light scattering (DLS), and scanning electron microscope (SEM) imaging. Increasing the styrene amounts lead to larger particles, while higher crosslinker amounts result in a narrower size distribution. Thermal testing indicates heat resistance up to 300 °C, suitable for enhanced oil recovery (EOR) applications. Rheological tests determine an optimal 30-day release for the PNIPAM core, with the CS polymer showing increased viscosity under harsh conditions. The colloidal stability model estblished by Derjaguin, Landau, Verwey, and Overbeek (DLVO theory) and experimental results demonstrate good stability and energy barriers at room temperature, but decreased stability and increased agglomeration at higher temperatures. Thickening the styrene shell leads to particle agglomeration and unsuitable stability. The study confirms the effectiveness of the model in analyzing CS colloidal latex systems.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 9","pages":"1305 - 1321"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05270-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the efficiency of hydrophilic polymers in oil reservoirs, a method encapsulates the polymer within a protective shell, safeguarding the core polymer and enabling controlled release in demanding, high-temperature conditions. Poly(N-isopropylacrylamide) nanoparticles are encapsulated with polystyrene shells through emulsion polymerization in this study. Varying the amounts of shell monmer and crosslinking agents resulted thick, sphere-shaped shells with homogeneous morphology, which protects the core polymer and enabling controlled release. Structural and morphological properties are characterized using Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (H1NMR), dynamic light scattering (DLS), and scanning electron microscope (SEM) imaging. Increasing the styrene amounts lead to larger particles, while higher crosslinker amounts result in a narrower size distribution. Thermal testing indicates heat resistance up to 300 °C, suitable for enhanced oil recovery (EOR) applications. Rheological tests determine an optimal 30-day release for the PNIPAM core, with the CS polymer showing increased viscosity under harsh conditions. The colloidal stability model estblished by Derjaguin, Landau, Verwey, and Overbeek (DLVO theory) and experimental results demonstrate good stability and energy barriers at room temperature, but decreased stability and increased agglomeration at higher temperatures. Thickening the styrene shell leads to particle agglomeration and unsuitable stability. The study confirms the effectiveness of the model in analyzing CS colloidal latex systems.

Graphical Abstract

Abstract Image

Abstract Image

优化提高石油采收率剂的合成和应用:利用开发的基于 DLVO 的模型对优化的纳米结构 PNIPAM/PS 核壳聚合物进行稳定性评估
为了提高亲水性聚合物在油藏中的使用效率,有一种方法可以将聚合物封装在保护壳内,从而保护核心聚合物,并在苛刻的高温条件下实现可控释放。本研究通过乳液聚合法将聚(N-异丙基丙烯酰胺)纳米粒子与聚苯乙烯外壳封装在一起。通过改变外壳单体和交联剂的用量,获得了具有均匀形态的厚球形外壳,从而保护了核心聚合物并实现了控释。利用傅立叶变换红外光谱(FTIR)、质子核磁共振(H1NMR)、动态光散射(DLS)和扫描电子显微镜(SEM)成像对结构和形态特性进行了表征。苯乙烯用量越多,颗粒越大,而交联剂用量越多,粒度分布越窄。热测试表明,其耐热性最高可达 300°C,适用于提高石油采收率(EOR)应用。流变测试表明,PNIPAM 核心的最佳释放期为 30 天,而 CS 聚合物在苛刻条件下的粘度会增加。由 Derjaguin、Landau、Verwey 和 Overbeek 建立的胶体稳定性模型(DLVO 理论)和实验结果表明,在室温下具有良好的稳定性和能量屏障,但在较高温度下稳定性降低,团聚现象增加。苯乙烯外壳增厚会导致颗粒团聚,稳定性也会降低。该研究证实了该模型在分析 CS 胶体乳胶系统中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信