Toric Sylvester forms

Pub Date : 2024-05-28 DOI:10.1016/j.jpaa.2024.107739
Laurent Busé , Carles Checa
{"title":"Toric Sylvester forms","authors":"Laurent Busé ,&nbsp;Carles Checa","doi":"10.1016/j.jpaa.2024.107739","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the structure of the saturation of ideals generated by sparse homogeneous polynomials over a projective toric variety <em>X</em> with respect to the irrelevant ideal of <em>X</em>. As our main results, we establish a duality property and make it explicit by introducing toric Sylvester forms, under a certain positivity assumption on <em>X</em>. In particular, we prove that toric Sylvester forms yield bases of some graded components of <span><math><msup><mrow><mi>I</mi></mrow><mrow><mtext>sat</mtext></mrow></msup><mo>/</mo><mi>I</mi></math></span>, where <em>I</em> denotes an ideal generated by <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> generic forms, <em>n</em> is the dimension of <em>X</em> and <span><math><msup><mrow><mi>I</mi></mrow><mrow><mtext>sat</mtext></mrow></msup></math></span> is the saturation of <em>I</em> with respect to the irrelevant ideal of the Cox ring of <em>X</em>. Then, to illustrate the relevance of toric Sylvester forms we provide three consequences in elimination theory over smooth toric varieties: (1) we introduce a new family of elimination matrices that can be used to solve sparse polynomial systems by means of linear algebra methods, including overdetermined polynomial systems; (2) by incorporating toric Sylvester forms to the classical Koszul complex associated to a polynomial system, we obtain new expressions of the sparse resultant as a determinant of a complex; (3) we explore the computation of the toric residue of the product of two forms.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the structure of the saturation of ideals generated by sparse homogeneous polynomials over a projective toric variety X with respect to the irrelevant ideal of X. As our main results, we establish a duality property and make it explicit by introducing toric Sylvester forms, under a certain positivity assumption on X. In particular, we prove that toric Sylvester forms yield bases of some graded components of Isat/I, where I denotes an ideal generated by n+1 generic forms, n is the dimension of X and Isat is the saturation of I with respect to the irrelevant ideal of the Cox ring of X. Then, to illustrate the relevance of toric Sylvester forms we provide three consequences in elimination theory over smooth toric varieties: (1) we introduce a new family of elimination matrices that can be used to solve sparse polynomial systems by means of linear algebra methods, including overdetermined polynomial systems; (2) by incorporating toric Sylvester forms to the classical Koszul complex associated to a polynomial system, we obtain new expressions of the sparse resultant as a determinant of a complex; (3) we explore the computation of the toric residue of the product of two forms.

分享
查看原文
西尔维斯特环形
在本文中,我们研究了由投影环综上的稀疏同次多项式生成的理想的饱和度的结构,它是相对于......的无关理想而言的。 作为我们的主要结果,我们建立了一个对偶性质,并在......的某一正向性假设下,通过引入环西尔维斯特形式使其明确化。特别是,我们证明了环状西尔维斯特形式产生了Ⅳ的某些分级成分的基,其中表示由泛函形式生成的理想,是Ⅳ的维度,是Ⅳ的饱和度,相对于Ⅳ的考克斯环的无关理想。然后,为了说明环状西尔维斯特形式的相关性,我们提供了光滑环状变上消元理论的三个结果:(1) 我们引入了一个新的消元矩阵族,可用于通过线性代数方法求解稀疏多项式系统,包括超定多项式系统;(2) 通过将环状西尔维斯特形式纳入与多项式系统相关的经典科斯祖尔复数,我们得到了稀疏结果作为复数行列式的新表达式;(3) 我们探讨了两个形式乘积的环状残差的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信