{"title":"Multi-strategy Hybrid Coati Optimizer: A Case Study of Prediction of Average Daily Electricity Consumption in China","authors":"Gang Hu, Sa Wang, Essam H. Houssein","doi":"10.1007/s42235-024-00549-9","DOIUrl":null,"url":null,"abstract":"<div><p>The power sector is an important factor in ensuring the development of the national economy. Scientific simulation and prediction of power consumption help achieve the balance between power generation and power consumption. In this paper, a Multi-strategy Hybrid Coati Optimizer (MCOA) is used to optimize the parameters of the three-parameter combinatorial optimization model TDGM(1,1,<i>r</i>,<i>ξ</i>,<i>Csz</i>) to realize the simulation and prediction of China’s daily electricity consumption. Firstly, a novel MCOA is proposed in this paper, by making the following improvements to the Coati Optimization Algorithm (COA): (i) Introduce improved circle chaotic mapping strategy. (ii) Fusing Aquila Optimizer, to enhance MCOA's exploration capabilities. (iii) Adopt an adaptive optimal neighborhood jitter learning strategy. Effectively improve MCOA escape from local optimal solutions. (iv) Incorporating Differential Evolution to enhance the diversity of the population. Secondly, the superiority of the MCOA algorithm is verified by comparing it with the newly proposed algorithm, the improved optimization algorithm, and the hybrid algorithm on the CEC2019 and CEC2020 test sets. Finally, in this paper, MCOA is used to optimize the parameters of TDGM(1,1,<i>r</i>,<i>ξ</i>,<i>Csz</i>), and this model is applied to forecast the daily electricity consumption in China and compared with the predictions of 14 models, including seven intelligent algorithm-optimized TDGM(1,1,<i>r</i>,<i>ξ</i>,<i>Csz</i>), and seven forecasting models. The experimental results show that the error of the proposed method is minimized, which verifies the validity of the proposed method.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 5","pages":"2540 - 2568"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00549-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The power sector is an important factor in ensuring the development of the national economy. Scientific simulation and prediction of power consumption help achieve the balance between power generation and power consumption. In this paper, a Multi-strategy Hybrid Coati Optimizer (MCOA) is used to optimize the parameters of the three-parameter combinatorial optimization model TDGM(1,1,r,ξ,Csz) to realize the simulation and prediction of China’s daily electricity consumption. Firstly, a novel MCOA is proposed in this paper, by making the following improvements to the Coati Optimization Algorithm (COA): (i) Introduce improved circle chaotic mapping strategy. (ii) Fusing Aquila Optimizer, to enhance MCOA's exploration capabilities. (iii) Adopt an adaptive optimal neighborhood jitter learning strategy. Effectively improve MCOA escape from local optimal solutions. (iv) Incorporating Differential Evolution to enhance the diversity of the population. Secondly, the superiority of the MCOA algorithm is verified by comparing it with the newly proposed algorithm, the improved optimization algorithm, and the hybrid algorithm on the CEC2019 and CEC2020 test sets. Finally, in this paper, MCOA is used to optimize the parameters of TDGM(1,1,r,ξ,Csz), and this model is applied to forecast the daily electricity consumption in China and compared with the predictions of 14 models, including seven intelligent algorithm-optimized TDGM(1,1,r,ξ,Csz), and seven forecasting models. The experimental results show that the error of the proposed method is minimized, which verifies the validity of the proposed method.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.