Asymptotic Property of Parabolic Equations Involving Pseudo-relativistic Schrödinger Operators

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Chen Qiao, Su-fang Tang
{"title":"Asymptotic Property of Parabolic Equations Involving Pseudo-relativistic Schrödinger Operators","authors":"Chen Qiao, Su-fang Tang","doi":"10.1007/s10255-024-1097-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate parabolic equations involving nonlocal pseudo-relativistic Schrödinger operators (−Δ + <i>m</i><sup>2</sup>)<sup><i>s</i></sup> with <i>s</i> ∈ (0, 1) and mass <i>m</i> &gt; 0 in bounded regions. We establish the asymptotic narrow region principle and asymptotic strong maximum principle for anti symmetric function. As applications, employing the method of moving planes, we show the asymptotical radial symmetry and monotonicity of positive solutions in an unit ball.</p>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"70 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1097-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate parabolic equations involving nonlocal pseudo-relativistic Schrödinger operators (−Δ + m2)s with s ∈ (0, 1) and mass m > 0 in bounded regions. We establish the asymptotic narrow region principle and asymptotic strong maximum principle for anti symmetric function. As applications, employing the method of moving planes, we show the asymptotical radial symmetry and monotonicity of positive solutions in an unit ball.

涉及伪相对论薛定谔算子的抛物方程的渐近特性
本文研究了涉及非局部伪相对论薛定谔算子 (-Δ + m2)s 的抛物方程,其中 s∈ (0, 1) 和质量 m > 0 在有界区域内。我们建立了反对称函数的渐近窄区原理和渐近强最大原理。作为应用,我们利用移动平面的方法,证明了单位球内正解的渐近径向对称性和单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信