Uniform Large Deviations for Stochastic Generalized Burgers-Huxley Equation Driven by Multiplicative Noise

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Hui Guo, Xi-liang Li, Jin Ma
{"title":"Uniform Large Deviations for Stochastic Generalized Burgers-Huxley Equation Driven by Multiplicative Noise","authors":"Hui Guo, Xi-liang Li, Jin Ma","doi":"10.1007/s10255-024-1129-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish a Freidlin-Wentzell type large deviation principle uniformly with respect to initial condition in bounded subsets, that do not necessarily belongs to compact sets, of an infinite dimensional Banach space for stochastic 1D generalized Burgers-Huxley equation driven by multiplicative small noise. The proof is based on the weak convergence approach obtained by [Budhiraja, Dupuis and Salins; Trans. Amer. Math. Soc., 2019].</p>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"13 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1129-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a Freidlin-Wentzell type large deviation principle uniformly with respect to initial condition in bounded subsets, that do not necessarily belongs to compact sets, of an infinite dimensional Banach space for stochastic 1D generalized Burgers-Huxley equation driven by multiplicative small noise. The proof is based on the weak convergence approach obtained by [Budhiraja, Dupuis and Salins; Trans. Amer. Math. Soc., 2019].

乘法噪声驱动的随机广义伯格斯-赫胥黎方程的均匀大偏差
本文针对乘性小噪声驱动的随机一维广义伯格斯-赫胥黎方程,在无限维巴纳赫空间的有界子集(不一定属于紧凑集)中,建立了均匀地关于初始条件的弗雷德林-温采尔型大偏差原理。证明基于[Budhiraja、Dupuis 和 Salins;Trans. Amer. Math. Soc., 2019]获得的弱收敛方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信