Natalia Mannise, Mariana Cosse, Gonzalo Greif, Nadia Bou, Carlos Robello, Susana González, Andres Iriarte
{"title":"Developing a DNA metabarcoding method to identify diet taxa in Neotropical foxes","authors":"Natalia Mannise, Mariana Cosse, Gonzalo Greif, Nadia Bou, Carlos Robello, Susana González, Andres Iriarte","doi":"10.3389/fevo.2024.1360714","DOIUrl":null,"url":null,"abstract":"Pampas and crab-eating foxes are medium-sized canids living in sympatry in the middle east of South America. Studies on the diet composition of these species provide a deep understanding of their ecological roles in the ecosystem structure and regulation. Using the metabarcoding technique, we analyzed the diet of both fox species in order to identify the vertebrate taxa included as food items. A fragment of the 12S ribosomal gene of the mtDNA was amplified using DNA extracted from 27 scat samples collected in south-central Uruguay during cold (June 2015) and warm (January – April 2016) seasons. A fox DNA blocking primer was designed to minimize the host amplicon products, and pooled samples were sequenced through paired-end reads (100 bp library) on a MiSeq Illumina Platform. The generated sequences were compared to a reference database built with sequences available in GenBank. In concordance with previous studies using traditional methods, we found that the most common food taxon were rodents. Qualitative differences in diet composition between both fox species were identified. Armadillo species were only found in pampas fox diet, while a greater variety of amphibians and birds were detected in crab-eating fox feces. Additionally, an innovative approach to differentiate between real and artifact sequences was employed. This method was based on comparing mutations at conserved and non-conserved positions within the secondary structure of the 12S rRNA, combined with network sequence reconstruction. Our results demonstrate the efficacy of the methodology in detecting the food species present in both fox diets, enabling the evaluation of intraspecific diversity among these species and facilitating the discarding of sequencing errors. This makes the methodology applicable to a wide range of studies.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"43 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fevo.2024.1360714","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pampas and crab-eating foxes are medium-sized canids living in sympatry in the middle east of South America. Studies on the diet composition of these species provide a deep understanding of their ecological roles in the ecosystem structure and regulation. Using the metabarcoding technique, we analyzed the diet of both fox species in order to identify the vertebrate taxa included as food items. A fragment of the 12S ribosomal gene of the mtDNA was amplified using DNA extracted from 27 scat samples collected in south-central Uruguay during cold (June 2015) and warm (January – April 2016) seasons. A fox DNA blocking primer was designed to minimize the host amplicon products, and pooled samples were sequenced through paired-end reads (100 bp library) on a MiSeq Illumina Platform. The generated sequences were compared to a reference database built with sequences available in GenBank. In concordance with previous studies using traditional methods, we found that the most common food taxon were rodents. Qualitative differences in diet composition between both fox species were identified. Armadillo species were only found in pampas fox diet, while a greater variety of amphibians and birds were detected in crab-eating fox feces. Additionally, an innovative approach to differentiate between real and artifact sequences was employed. This method was based on comparing mutations at conserved and non-conserved positions within the secondary structure of the 12S rRNA, combined with network sequence reconstruction. Our results demonstrate the efficacy of the methodology in detecting the food species present in both fox diets, enabling the evaluation of intraspecific diversity among these species and facilitating the discarding of sequencing errors. This makes the methodology applicable to a wide range of studies.
期刊介绍:
Frontiers in Ecology and Evolution publishes rigorously peer-reviewed research across fundamental and applied sciences, to provide ecological and evolutionary insights into our natural and anthropogenic world, and how it should best be managed. Field Chief Editor Mark A. Elgar at the University of Melbourne is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Eminent biologist and theist Theodosius Dobzhansky’s astute observation that “Nothing in biology makes sense except in the light of evolution” has arguably even broader relevance now than when it was first penned in The American Biology Teacher in 1973. One could similarly argue that not much in evolution makes sense without recourse to ecological concepts: understanding diversity — from microbial adaptations to species assemblages — requires insights from both ecological and evolutionary disciplines. Nowadays, technological developments from other fields allow us to address unprecedented ecological and evolutionary questions of astonishing detail, impressive breadth and compelling inference.
The specialty sections of Frontiers in Ecology and Evolution will publish, under a single platform, contemporary, rigorous research, reviews, opinions, and commentaries that cover the spectrum of ecological and evolutionary inquiry, both fundamental and applied. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria. Through this unique, Frontiers platform for open-access publishing and research networking, Frontiers in Ecology and Evolution aims to provide colleagues and the broader community with ecological and evolutionary insights into our natural and anthropogenic world, and how it might best be managed.