Michelle H. Crabbe, Alan R. Kennedy, Catherine E. Weetman, Robert E. Mulvey
{"title":"Diversity of Structures and Bonding in Alkali Metal Ureaphosphanes","authors":"Michelle H. Crabbe, Alan R. Kennedy, Catherine E. Weetman, Robert E. Mulvey","doi":"10.1002/hlca.202400077","DOIUrl":null,"url":null,"abstract":"<p>While organoelement compounds of lithium, sodium and potassium have been much studied for decades and consequently have found forests of applications, those of the heavier alkali metals, rubidium and caesium would barely manage to fill a tree. However, recently the literature has seen some little growth spurts with these metals, hinting at a possible fertile future in areas such as homogeneous catalysis provided more work is put into their fundamental development. Here we report the synthesis and crystal structures of lithium, rubidium and caesium derivatives of the ureaphosphane Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>NHC(=O)NHPh, chosen because it offers <i>O, N, P</i>, and π-coordination sites. Though one may expect such alkali metal compounds to be essentially similar, the caesium complex has novel features where Cs<sup>+</sup> engages in a side-on coordination to the C=O bond and in a weak bond to the P centre, both of which are absent in the Rb structure. Less surprisingly, the lithium derivative is tetrameric in contrast to the infinite networks of the rubidium and caesium structures. All alkali metal derivatives were made with deprotonating the ureaphosphane by a suitable base, including the sodium and potassium complexes though these two complexes could not be obtained in a crystalline form.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hlca.202400077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202400077","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While organoelement compounds of lithium, sodium and potassium have been much studied for decades and consequently have found forests of applications, those of the heavier alkali metals, rubidium and caesium would barely manage to fill a tree. However, recently the literature has seen some little growth spurts with these metals, hinting at a possible fertile future in areas such as homogeneous catalysis provided more work is put into their fundamental development. Here we report the synthesis and crystal structures of lithium, rubidium and caesium derivatives of the ureaphosphane Ph2PCH2CH2NHC(=O)NHPh, chosen because it offers O, N, P, and π-coordination sites. Though one may expect such alkali metal compounds to be essentially similar, the caesium complex has novel features where Cs+ engages in a side-on coordination to the C=O bond and in a weak bond to the P centre, both of which are absent in the Rb structure. Less surprisingly, the lithium derivative is tetrameric in contrast to the infinite networks of the rubidium and caesium structures. All alkali metal derivatives were made with deprotonating the ureaphosphane by a suitable base, including the sodium and potassium complexes though these two complexes could not be obtained in a crystalline form.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.