Affective EEG-based cross-session person identification using hierarchical graph embedding

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Honggang Liu, Xuanyu Jin, Dongjun Liu, Wanzeng Kong, Jiajia Tang, Yong Peng
{"title":"Affective EEG-based cross-session person identification using hierarchical graph embedding","authors":"Honggang Liu, Xuanyu Jin, Dongjun Liu, Wanzeng Kong, Jiajia Tang, Yong Peng","doi":"10.1007/s11571-024-10132-x","DOIUrl":null,"url":null,"abstract":"<p>The electroencephalogram (EEG) signal is being investigated as a more confidential biometric for person identification. Despite recent advancements, a persistent challenge lies in the influence of variations in affective states. Affective states consistently exist during data collection, regardless of the protocol used. Additionally, the inherently non-stationary nature of EEG makes it susceptible to fluctuations in affective states over time. Therefore, it would be highly crucial to perform precise EEG-based person identification under varying affective states. This paper employed an integrated Multi-scale Convolution and Graph Pooling network (MCGP) to mitigate the impact of affective state variations. MCGP utilized multiple 1D convolutions at different scales to dynamically extract and fuse features. Additionally, a graph pooling layer with an attention mechanism was incorporated to generate hierarchical graph embeddings. These embeddings were concatenated as inputs for a fully connected classification layer. Experiments were conducted on the SEED and SEED-V dataset, revealing that MCGP achieved an average accuracy of 85.51% for SEED and 88.69% for SEED-V in cross-session conditions involving mixed affective states. Under single affective state cross-session scenario, MCGP achieved an average accuracy of 85.75% for SEED and 88.06% for SEED-V for the same affective states, while obtaining 79.57% for SEED and 84.52% for SEED-V for different affective states. Results indicated that, compared to the baseline methods, MCGP effectively mitigated the impact of variations in affective states across different sessions. In single affective state cross-session scenario, identification performance for the same affective states was slightly higher than that for different affective states.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"23 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10132-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The electroencephalogram (EEG) signal is being investigated as a more confidential biometric for person identification. Despite recent advancements, a persistent challenge lies in the influence of variations in affective states. Affective states consistently exist during data collection, regardless of the protocol used. Additionally, the inherently non-stationary nature of EEG makes it susceptible to fluctuations in affective states over time. Therefore, it would be highly crucial to perform precise EEG-based person identification under varying affective states. This paper employed an integrated Multi-scale Convolution and Graph Pooling network (MCGP) to mitigate the impact of affective state variations. MCGP utilized multiple 1D convolutions at different scales to dynamically extract and fuse features. Additionally, a graph pooling layer with an attention mechanism was incorporated to generate hierarchical graph embeddings. These embeddings were concatenated as inputs for a fully connected classification layer. Experiments were conducted on the SEED and SEED-V dataset, revealing that MCGP achieved an average accuracy of 85.51% for SEED and 88.69% for SEED-V in cross-session conditions involving mixed affective states. Under single affective state cross-session scenario, MCGP achieved an average accuracy of 85.75% for SEED and 88.06% for SEED-V for the same affective states, while obtaining 79.57% for SEED and 84.52% for SEED-V for different affective states. Results indicated that, compared to the baseline methods, MCGP effectively mitigated the impact of variations in affective states across different sessions. In single affective state cross-session scenario, identification performance for the same affective states was slightly higher than that for different affective states.

Abstract Image

利用分层图嵌入进行基于情感脑电图的跨会期人员识别
脑电图(EEG)信号作为一种更保密的生物识别技术,正在被研究用于人员识别。尽管最近取得了进步,但持续存在的挑战在于情感状态变化的影响。在数据采集过程中,无论使用何种协议,情绪状态都会持续存在。此外,脑电图固有的非稳态特性使其容易受到情感状态随时间波动的影响。因此,在不同情感状态下进行基于脑电图的精确人员识别至关重要。本文采用了一个集成的多尺度卷积和图池化网络(MCGP)来减轻情感状态变化的影响。MCGP 利用不同尺度的多个一维卷积来动态提取和融合特征。此外,还加入了具有注意力机制的图池层,以生成分层图嵌入。这些嵌入被串联起来,作为全连接分类层的输入。在 SEED 和 SEED-V 数据集上进行的实验表明,在涉及混合情感状态的交叉会话条件下,MCGP 对 SEED 的平均准确率为 85.51%,对 SEED-V 的平均准确率为 88.69%。在单一情感状态交叉会话情况下,对于相同情感状态,MCGP 的 SEED 平均准确率为 85.75%,SEED-V 平均准确率为 88.06%;对于不同情感状态,MCGP 的 SEED 平均准确率为 79.57%,SEED-V 平均准确率为 84.52%。结果表明,与基线方法相比,MCGP 有效地减轻了不同会话中情感状态变化的影响。在单一情感状态跨时段情景下,相同情感状态的识别性能略高于不同情感状态的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信