{"title":"Analysis of bulk-surface reaction-sorption-diffusion systems with Langmuir-type adsorption","authors":"Björn Augner, Dieter Bothe","doi":"10.1016/j.matpur.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a class of bulk-surface reaction-adsorption-diffusion systems, i.e. a coupled system of reaction-diffusion systems on a bounded domain <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (bulk phase) and its boundary <span><math><mi>Σ</mi><mo>=</mo><mo>∂</mo><mi>Ω</mi></math></span> (surface phase), which are coupled via nonlinear normal flux boundary conditions. In particular, this class includes a heterogeneous catalysis model with Fickian bulk and surface diffusion and nonlinear adsorption of Langmuir type, i.e. transport from the bulk phase to the active surface, and desorption. For this model, we obtain well-posedness, positivity and global-in-time existence of solutions under some realistic structural conditions on the chemical reaction network and the sorption model. We work in appropriate Sobolev-Slobodetskii settings, where we aim for a wide range for the integrability index, including in particular values <span><math><mi>p</mi><mo><</mo><mi>d</mi></math></span>.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"188 ","pages":"Pages 215-272"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000485/pdfft?md5=4cc380ed54d79a86848e81405b723443&pid=1-s2.0-S0021782424000485-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000485","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a class of bulk-surface reaction-adsorption-diffusion systems, i.e. a coupled system of reaction-diffusion systems on a bounded domain (bulk phase) and its boundary (surface phase), which are coupled via nonlinear normal flux boundary conditions. In particular, this class includes a heterogeneous catalysis model with Fickian bulk and surface diffusion and nonlinear adsorption of Langmuir type, i.e. transport from the bulk phase to the active surface, and desorption. For this model, we obtain well-posedness, positivity and global-in-time existence of solutions under some realistic structural conditions on the chemical reaction network and the sorption model. We work in appropriate Sobolev-Slobodetskii settings, where we aim for a wide range for the integrability index, including in particular values .
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.