Analysis of bulk-surface reaction-sorption-diffusion systems with Langmuir-type adsorption

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Björn Augner, Dieter Bothe
{"title":"Analysis of bulk-surface reaction-sorption-diffusion systems with Langmuir-type adsorption","authors":"Björn Augner,&nbsp;Dieter Bothe","doi":"10.1016/j.matpur.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a class of bulk-surface reaction-adsorption-diffusion systems, i.e. a coupled system of reaction-diffusion systems on a bounded domain <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (bulk phase) and its boundary <span><math><mi>Σ</mi><mo>=</mo><mo>∂</mo><mi>Ω</mi></math></span> (surface phase), which are coupled via nonlinear normal flux boundary conditions. In particular, this class includes a heterogeneous catalysis model with Fickian bulk and surface diffusion and nonlinear adsorption of Langmuir type, i.e. transport from the bulk phase to the active surface, and desorption. For this model, we obtain well-posedness, positivity and global-in-time existence of solutions under some realistic structural conditions on the chemical reaction network and the sorption model. We work in appropriate Sobolev-Slobodetskii settings, where we aim for a wide range for the integrability index, including in particular values <span><math><mi>p</mi><mo>&lt;</mo><mi>d</mi></math></span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000485/pdfft?md5=4cc380ed54d79a86848e81405b723443&pid=1-s2.0-S0021782424000485-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a class of bulk-surface reaction-adsorption-diffusion systems, i.e. a coupled system of reaction-diffusion systems on a bounded domain ΩRd (bulk phase) and its boundary Σ=Ω (surface phase), which are coupled via nonlinear normal flux boundary conditions. In particular, this class includes a heterogeneous catalysis model with Fickian bulk and surface diffusion and nonlinear adsorption of Langmuir type, i.e. transport from the bulk phase to the active surface, and desorption. For this model, we obtain well-posedness, positivity and global-in-time existence of solutions under some realistic structural conditions on the chemical reaction network and the sorption model. We work in appropriate Sobolev-Slobodetskii settings, where we aim for a wide range for the integrability index, including in particular values p<d.

具有朗缪尔型吸附作用的体表反应-吸附-扩散系统分析
我们考虑一类体相-表面反应-吸附-扩散系统,即有界域Ω⊆Rd(体相)及其边界Σ=∂Ω(表面相)上的反应-扩散耦合系统,它们通过非线性法向通量边界条件耦合。特别是,这类模型包括一个异相催化模型,它具有费克式的体相和表面扩散以及朗缪尔式的非线性吸附,即从体相到活性表面的传输和解吸。对于这个模型,我们在化学反应网络和吸附模型的一些现实结构条件下,获得了求解的好求解性、正求解性和全局时间存在性。我们在适当的 Sobolev-Slobodetskii 设置下进行研究,我们的目标是在较宽的范围内获得可积分性指数,包括特定值 p<d。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信