On the hydrostatic approximation of Navier-Stokes-Maxwell system with Gevrey data

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ning Liu , Marius Paicu , Ping Zhang
{"title":"On the hydrostatic approximation of Navier-Stokes-Maxwell system with Gevrey data","authors":"Ning Liu ,&nbsp;Marius Paicu ,&nbsp;Ping Zhang","doi":"10.1016/j.matpur.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the local well-posedness of a scaled anisotropic Navier-Stokes-Maxwell system in a 2-D striped domain with initial data around some nonzero background magnetic field in Gevrey-2 class. Then we rigorously justify the limit from the scaled anisotropic equations to the associated hydrostatic system and provide with the precise convergence rate. Finally, with small initial data in Gevrey-<span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> class, we also extend the lifespan of thus obtained solutions to a longer time interval.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the local well-posedness of a scaled anisotropic Navier-Stokes-Maxwell system in a 2-D striped domain with initial data around some nonzero background magnetic field in Gevrey-2 class. Then we rigorously justify the limit from the scaled anisotropic equations to the associated hydrostatic system and provide with the precise convergence rate. Finally, with small initial data in Gevrey-32 class, we also extend the lifespan of thus obtained solutions to a longer time interval.

关于带有 Gevrey 数据的 Navier-Stokes-Maxwell 系统的静力学近似值
本文证明了各向异性 Navier-Stokes-Maxwell 系统在二维薄域中的局部存在解,其初始数据围绕 Gevrey-2 类非零磁场。接下来,我们严格论证了各向异性方程对相关静力学系统的限制,并获得了精确的收敛率。最后,利用 Gevrey-3/2 类的小初始数据,我们将由此获得的解的寿命扩展到更长的时间间隔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信