Nathaël Alibaud , Jørgen Endal , Espen R. Jakobsen
{"title":"Optimal stability results and nonlinear duality for L∞ entropy and L1 viscosity solutions","authors":"Nathaël Alibaud , Jørgen Endal , Espen R. Jakobsen","doi":"10.1016/j.matpur.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>We give a new and rigorous duality relation between two central notions of weak solutions of nonlinear PDEs: entropy and viscosity solutions. It takes the form of the <em>nonlinear dual inequality:</em><span><span><span>(⋆)</span><span><math><mo>∫</mo><mo>|</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi><mo>≤</mo><mo>∫</mo><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mo>∀</mo><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn><mo>,</mo><mo>∀</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>∀</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is the entropy solution semigroup of the anisotropic degenerate parabolic equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mrow><mi>div</mi></mrow><mi>F</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>D</mi><mi>u</mi><mo>)</mo><mo>,</mo></math></span></span></span> and where we look for the smallest semigroup <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> satisfying <span>(⋆)</span>. This amounts to finding an optimal weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> contraction estimate for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. Our main result is that <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>φ</mi><mo>=</mo><msub><mrow><mi>sup</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mo></mo><mo>{</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>⋅</mo><mi>D</mi><mi>φ</mi><mo>+</mo><mtext>tr</mtext><mo>(</mo><mi>A</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>φ</mi><mo>)</mo><mo>}</mo><mo>.</mo></math></span></span></span> Since weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> contraction results are mainly used for possibly nonintegrable <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> solutions <em>u</em>, the natural spaces behind this duality are <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We therefore develop a corresponding <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> theory for viscosity solutions <em>φ</em>. But <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> itself is too large for well-posedness, and we rigorously identify the weakest <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> type Banach setting where we can have it – a subspace of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> called <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mtext>int</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>. A consequence of our results is a new domain of dependence like estimate for second order anisotropic degenerate parabolic PDEs. It is given in terms of a stochastic target problem and extends in a natural way recent results for first order hyperbolic PDEs by [N. Pogodaev, <em>J. Differ. Equ.,</em> 2018].</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"188 ","pages":"Pages 26-72"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000503/pdfft?md5=dab8d6332cc3822ca14f90b02cc59d6f&pid=1-s2.0-S0021782424000503-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000503","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give a new and rigorous duality relation between two central notions of weak solutions of nonlinear PDEs: entropy and viscosity solutions. It takes the form of the nonlinear dual inequality:(⋆) where is the entropy solution semigroup of the anisotropic degenerate parabolic equation and where we look for the smallest semigroup satisfying (⋆). This amounts to finding an optimal weighted contraction estimate for . Our main result is that is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman equation Since weighted contraction results are mainly used for possibly nonintegrable solutions u, the natural spaces behind this duality are for and for . We therefore develop a corresponding theory for viscosity solutions φ. But itself is too large for well-posedness, and we rigorously identify the weakest type Banach setting where we can have it – a subspace of called . A consequence of our results is a new domain of dependence like estimate for second order anisotropic degenerate parabolic PDEs. It is given in terms of a stochastic target problem and extends in a natural way recent results for first order hyperbolic PDEs by [N. Pogodaev, J. Differ. Equ., 2018].
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.