Optimal stability results and nonlinear duality for L∞ entropy and L1 viscosity solutions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Nathaël Alibaud , Jørgen Endal , Espen R. Jakobsen
{"title":"Optimal stability results and nonlinear duality for L∞ entropy and L1 viscosity solutions","authors":"Nathaël Alibaud ,&nbsp;Jørgen Endal ,&nbsp;Espen R. Jakobsen","doi":"10.1016/j.matpur.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>We give a new and rigorous duality relation between two central notions of weak solutions of nonlinear PDEs: entropy and viscosity solutions. It takes the form of the <em>nonlinear dual inequality:</em><span><span><span>(⋆)</span><span><math><mo>∫</mo><mo>|</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi><mo>≤</mo><mo>∫</mo><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mo>∀</mo><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn><mo>,</mo><mo>∀</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>∀</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is the entropy solution semigroup of the anisotropic degenerate parabolic equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mrow><mi>div</mi></mrow><mi>F</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>D</mi><mi>u</mi><mo>)</mo><mo>,</mo></math></span></span></span> and where we look for the smallest semigroup <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> satisfying <span>(⋆)</span>. This amounts to finding an optimal weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> contraction estimate for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. Our main result is that <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>φ</mi><mo>=</mo><msub><mrow><mi>sup</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mo>⁡</mo><mo>{</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>⋅</mo><mi>D</mi><mi>φ</mi><mo>+</mo><mtext>tr</mtext><mo>(</mo><mi>A</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>φ</mi><mo>)</mo><mo>}</mo><mo>.</mo></math></span></span></span> Since weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> contraction results are mainly used for possibly nonintegrable <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> solutions <em>u</em>, the natural spaces behind this duality are <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We therefore develop a corresponding <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> theory for viscosity solutions <em>φ</em>. But <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> itself is too large for well-posedness, and we rigorously identify the weakest <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> type Banach setting where we can have it – a subspace of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> called <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mtext>int</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>. A consequence of our results is a new domain of dependence like estimate for second order anisotropic degenerate parabolic PDEs. It is given in terms of a stochastic target problem and extends in a natural way recent results for first order hyperbolic PDEs by [N. Pogodaev, <em>J. Differ. Equ.,</em> 2018].</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000503/pdfft?md5=dab8d6332cc3822ca14f90b02cc59d6f&pid=1-s2.0-S0021782424000503-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a new and rigorous duality relation between two central notions of weak solutions of nonlinear PDEs: entropy and viscosity solutions. It takes the form of the nonlinear dual inequality:(⋆)|Stu0Stv0|φ0dx|u0v0|Gtφ0dx,φ00,u0,v0, where St is the entropy solution semigroup of the anisotropic degenerate parabolic equationtu+divF(u)=div(A(u)Du), and where we look for the smallest semigroup Gt satisfying (⋆). This amounts to finding an optimal weighted L1 contraction estimate for St. Our main result is that Gt is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman equationtφ=supξ{F(ξ)Dφ+tr(A(ξ)D2φ)}. Since weighted L1 contraction results are mainly used for possibly nonintegrable L solutions u, the natural spaces behind this duality are L for St and L1 for Gt. We therefore develop a corresponding L1 theory for viscosity solutions φ. But L1 itself is too large for well-posedness, and we rigorously identify the weakest L1 type Banach setting where we can have it – a subspace of L1 called Lint. A consequence of our results is a new domain of dependence like estimate for second order anisotropic degenerate parabolic PDEs. It is given in terms of a stochastic target problem and extends in a natural way recent results for first order hyperbolic PDEs by [N. Pogodaev, J. Differ. Equ., 2018].

L∞熵解和 L1 粘度解的最佳稳定性结果和非线性对偶性
我们给出了在非线性 PDE 中起核心作用的两个弱解概念之间的新对偶关系。它们是熵解和粘性解。这种关系的形式为:其中是与抛物、退化和各向异性方程相关的半群,而我们正在寻找最小的满足半群。这相当于为 . 建立了一个最优权重收缩原理。由于这种加权估计主要用于有界和非必要可积分的解,自然空间为 和 。这促使我们发展出粘性解的理论。但是,对偶问题在这个空间中并不好求,因此我们要严格确定问题在其中好求的最弱空间。这就引出了一个名为 .特别是,我们的结果概括了 [N. Pogodaev, 2018] 最近关于一阶双曲方程依赖域的估计。我们的估计是用目标问题来表述的,对于二阶变性抛物方程和各向异性抛物方程仍有意义,因为这些问题变得随机了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信