Optimal stability results and nonlinear duality for L∞ entropy and L1 viscosity solutions

IF 2.1 1区 数学 Q1 MATHEMATICS
Nathaël Alibaud , Jørgen Endal , Espen R. Jakobsen
{"title":"Optimal stability results and nonlinear duality for L∞ entropy and L1 viscosity solutions","authors":"Nathaël Alibaud ,&nbsp;Jørgen Endal ,&nbsp;Espen R. Jakobsen","doi":"10.1016/j.matpur.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>We give a new and rigorous duality relation between two central notions of weak solutions of nonlinear PDEs: entropy and viscosity solutions. It takes the form of the <em>nonlinear dual inequality:</em><span><span><span>(⋆)</span><span><math><mo>∫</mo><mo>|</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi><mo>≤</mo><mo>∫</mo><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>|</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mo>∀</mo><msub><mrow><mi>φ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn><mo>,</mo><mo>∀</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>∀</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is the entropy solution semigroup of the anisotropic degenerate parabolic equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mrow><mi>div</mi></mrow><mi>F</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mi>D</mi><mi>u</mi><mo>)</mo><mo>,</mo></math></span></span></span> and where we look for the smallest semigroup <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> satisfying <span>(⋆)</span>. This amounts to finding an optimal weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> contraction estimate for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. Our main result is that <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>φ</mi><mo>=</mo><msub><mrow><mi>sup</mi></mrow><mrow><mi>ξ</mi></mrow></msub><mo>⁡</mo><mo>{</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>⋅</mo><mi>D</mi><mi>φ</mi><mo>+</mo><mtext>tr</mtext><mo>(</mo><mi>A</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>φ</mi><mo>)</mo><mo>}</mo><mo>.</mo></math></span></span></span> Since weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> contraction results are mainly used for possibly nonintegrable <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> solutions <em>u</em>, the natural spaces behind this duality are <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We therefore develop a corresponding <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> theory for viscosity solutions <em>φ</em>. But <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> itself is too large for well-posedness, and we rigorously identify the weakest <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> type Banach setting where we can have it – a subspace of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> called <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mtext>int</mtext></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span>. A consequence of our results is a new domain of dependence like estimate for second order anisotropic degenerate parabolic PDEs. It is given in terms of a stochastic target problem and extends in a natural way recent results for first order hyperbolic PDEs by [N. Pogodaev, <em>J. Differ. Equ.,</em> 2018].</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"188 ","pages":"Pages 26-72"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000503/pdfft?md5=dab8d6332cc3822ca14f90b02cc59d6f&pid=1-s2.0-S0021782424000503-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000503","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a new and rigorous duality relation between two central notions of weak solutions of nonlinear PDEs: entropy and viscosity solutions. It takes the form of the nonlinear dual inequality:(⋆)|Stu0Stv0|φ0dx|u0v0|Gtφ0dx,φ00,u0,v0, where St is the entropy solution semigroup of the anisotropic degenerate parabolic equationtu+divF(u)=div(A(u)Du), and where we look for the smallest semigroup Gt satisfying (⋆). This amounts to finding an optimal weighted L1 contraction estimate for St. Our main result is that Gt is the viscosity solution semigroup of the Hamilton-Jacobi-Bellman equationtφ=supξ{F(ξ)Dφ+tr(A(ξ)D2φ)}. Since weighted L1 contraction results are mainly used for possibly nonintegrable L solutions u, the natural spaces behind this duality are L for St and L1 for Gt. We therefore develop a corresponding L1 theory for viscosity solutions φ. But L1 itself is too large for well-posedness, and we rigorously identify the weakest L1 type Banach setting where we can have it – a subspace of L1 called Lint. A consequence of our results is a new domain of dependence like estimate for second order anisotropic degenerate parabolic PDEs. It is given in terms of a stochastic target problem and extends in a natural way recent results for first order hyperbolic PDEs by [N. Pogodaev, J. Differ. Equ., 2018].

L∞熵解和 L1 粘度解的最佳稳定性结果和非线性对偶性
我们给出了在非线性 PDE 中起核心作用的两个弱解概念之间的新对偶关系。它们是熵解和粘性解。这种关系的形式为:其中是与抛物、退化和各向异性方程相关的半群,而我们正在寻找最小的满足半群。这相当于为 . 建立了一个最优权重收缩原理。由于这种加权估计主要用于有界和非必要可积分的解,自然空间为 和 。这促使我们发展出粘性解的理论。但是,对偶问题在这个空间中并不好求,因此我们要严格确定问题在其中好求的最弱空间。这就引出了一个名为 .特别是,我们的结果概括了 [N. Pogodaev, 2018] 最近关于一阶双曲方程依赖域的估计。我们的估计是用目标问题来表述的,对于二阶变性抛物方程和各向异性抛物方程仍有意义,因为这些问题变得随机了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信