{"title":"ARGET ATRP of styrene with low catalyst usage in bio-based solvent γ-valerolactone","authors":"Qianqian Zhu, Tianchen Song, Jiaxin Zhao, Gang Gao, Yixin Xiang, Jiangang Gao, Xianrong Shen","doi":"10.1515/epoly-2024-0022","DOIUrl":null,"url":null,"abstract":"The application of bio-based solvents for living radical polymerization has been a hot topic in recent year. In this article, γ-valerolactone (GVL), a bio-based solvent as green media for ARGET atom transfer radical polymerization (ATRP) of styrene (St) were investigated. We first conducted polymerization of St in γ-valerolactone using copper(<jats:sc>ii</jats:sc>) bromide as the catalyst, tris(2-pyridylmethyl) amine as the ligand, and only sodium ascorbate as reducing agent. The polymerization achieved moderate conversion; however, the controllability of polymerization was not very good, providing a polymer with a broad molecular weight distribution (<jats:italic>M</jats:italic> <jats:sub>w</jats:sub>/<jats:italic>M</jats:italic> <jats:sub>n</jats:sub> <jats:italic>></jats:italic> 1.30). When sodium carbonate is introduced, excellent results were obtained providing high yields and low <jats:italic>M</jats:italic> <jats:sub>w</jats:sub>/<jats:italic>M</jats:italic> <jats:sub>n</jats:sub> values under very low catalyst usage (∼5 ppm). <jats:sup>1</jats:sup>H NMR spectroscopy, chain extension, and MALDI–MS experiments confirmed the final polymer chains with high fidelity. The use of GVL solvent opens a new route for the easy synthesis of PS through ARGET ATRP with low catalyst usage conditions.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"77 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2024-0022","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The application of bio-based solvents for living radical polymerization has been a hot topic in recent year. In this article, γ-valerolactone (GVL), a bio-based solvent as green media for ARGET atom transfer radical polymerization (ATRP) of styrene (St) were investigated. We first conducted polymerization of St in γ-valerolactone using copper(ii) bromide as the catalyst, tris(2-pyridylmethyl) amine as the ligand, and only sodium ascorbate as reducing agent. The polymerization achieved moderate conversion; however, the controllability of polymerization was not very good, providing a polymer with a broad molecular weight distribution (Mw/Mn> 1.30). When sodium carbonate is introduced, excellent results were obtained providing high yields and low Mw/Mn values under very low catalyst usage (∼5 ppm). 1H NMR spectroscopy, chain extension, and MALDI–MS experiments confirmed the final polymer chains with high fidelity. The use of GVL solvent opens a new route for the easy synthesis of PS through ARGET ATRP with low catalyst usage conditions.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.