Algebraic homotopy classes

IF 2.1 1区 数学 Q1 MATHEMATICS
Juliusz Banecki
{"title":"Algebraic homotopy classes","authors":"Juliusz Banecki","doi":"10.1016/j.matpur.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>We prove several positive results regarding representation of homotopy classes of spheres and algebraic groups by regular mappings. Most importantly we show that every mapping from a sphere to an orthogonal or a unitary group is homotopic to a regular one. Furthermore we prove that algebraic homotopy classes of spheres form a subgroup of the homotopy group, and that a similar result holds also for cohomotopy groups of arbitrary varieties.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"187 ","pages":"Pages 45-57"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000588/pdfft?md5=db876b33b1eccaf152b3741e38a53afa&pid=1-s2.0-S0021782424000588-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000588","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove several positive results regarding representation of homotopy classes of spheres and algebraic groups by regular mappings. Most importantly we show that every mapping from a sphere to an orthogonal or a unitary group is homotopic to a regular one. Furthermore we prove that algebraic homotopy classes of spheres form a subgroup of the homotopy group, and that a similar result holds also for cohomotopy groups of arbitrary varieties.

代数同调类
我们用正则映射证明了一些关于球和代数群同调类表示的积极结果。最重要的是,我们证明了球面在正交或单元群中的每个应用都与正则应用同构。此外,我们还证明了球的代数同调类构成同调群的一个子群,而且类似的结果也适用于任意品种的同调群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信