Normalized solutions to Schrödinger equations in the strongly sublinear regime

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jarosław Mederski, Jacopo Schino
{"title":"Normalized solutions to Schrödinger equations in the strongly sublinear regime","authors":"Jarosław Mederski, Jacopo Schino","doi":"10.1007/s00526-024-02729-1","DOIUrl":null,"url":null,"abstract":"<p>We look for solutions to the Schrödinger equation </p><span>$$\\begin{aligned} -\\Delta u + \\lambda u = g(u) \\quad \\text {in } \\mathbb {R}^N \\end{aligned}$$</span><p>coupled with the mass constraint <span>\\(\\int _{\\mathbb {R}^N}|u|^2\\,dx = \\rho ^2\\)</span>, with <span>\\(N\\ge 2\\)</span>. The behaviour of <i>g</i> at the origin is allowed to be strongly sublinear, i.e., <span>\\(\\lim _{s\\rightarrow 0}g(s)/s = -\\infty \\)</span>, which includes the case </p><span>$$\\begin{aligned} g(s) = \\alpha s \\ln s^2 + \\mu |s|^{p-2} s \\end{aligned}$$</span><p>with <span>\\(\\alpha &gt; 0\\)</span> and <span>\\(\\mu \\in \\mathbb {R}\\)</span>, <span>\\(2 &lt; p \\le 2^*\\)</span> properly chosen. We consider a family of approximating problems that can be set in <span>\\(H^1(\\mathbb {R}^N)\\)</span> and the corresponding least-energy solutions, then we prove that such a family of solutions converges to a least-energy one to the original problem. Additionally, under certain assumptions about <i>g</i> that allow us to work in a suitable subspace of <span>\\(H^1(\\mathbb {R}^N)\\)</span>, we prove the existence of infinitely, many solutions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02729-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We look for solutions to the Schrödinger equation

$$\begin{aligned} -\Delta u + \lambda u = g(u) \quad \text {in } \mathbb {R}^N \end{aligned}$$

coupled with the mass constraint \(\int _{\mathbb {R}^N}|u|^2\,dx = \rho ^2\), with \(N\ge 2\). The behaviour of g at the origin is allowed to be strongly sublinear, i.e., \(\lim _{s\rightarrow 0}g(s)/s = -\infty \), which includes the case

$$\begin{aligned} g(s) = \alpha s \ln s^2 + \mu |s|^{p-2} s \end{aligned}$$

with \(\alpha > 0\) and \(\mu \in \mathbb {R}\), \(2 < p \le 2^*\) properly chosen. We consider a family of approximating problems that can be set in \(H^1(\mathbb {R}^N)\) and the corresponding least-energy solutions, then we prove that such a family of solutions converges to a least-energy one to the original problem. Additionally, under certain assumptions about g that allow us to work in a suitable subspace of \(H^1(\mathbb {R}^N)\), we prove the existence of infinitely, many solutions.

强亚线性状态下薛定谔方程的归一化解
我们寻找薛定谔方程的解 $$\begin{aligned} -\Delta u + \lambda u = g(u) \quad \text {in } \mathbb {R}^N \end{aligned}$与质量约束\(\int_{\mathbb{R}^N}|u|^2\,dx=\rho ^2\),与\(N\ge 2\) 的质量约束相耦合。允许 g 在原点的行为是强亚线性的,即\(\lim _{s\rightarrow 0}g(s)/s = -\infty \),其中包括$$begin{aligned}g(s) = \alpha s \ln s^2 + \mu |s|^{p-2} s \end{aligned}$$的情况;0) and\(\mu in \mathbb {R}\), \(2 < p \le 2^*\) properly chosen.我们考虑了可以设置在\(H^1(\mathbb {R}^N)\) 中的近似问题族以及相应的最小能量解,然后证明这样的解族收敛于原始问题的最小能量解。此外,根据关于 g 的某些假设,我们可以在 \(H^1(\mathbb {R}^N)\) 的合适子空间中工作,我们证明了无穷多个解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信