Study on the Effect of Laser Remelting Energy Density on the Microstructure and Wear Resistance of Fe-Based Alloy Coatings Fabricated by Laser Cladding
IF 3.2 3区 材料科学Q2 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"Study on the Effect of Laser Remelting Energy Density on the Microstructure and Wear Resistance of Fe-Based Alloy Coatings Fabricated by Laser Cladding","authors":"Rui Deng, Huan Li, Chunjiang Zhao, Changyao Ouyang, Runze Wei, Rui Wang, Qiaofeng Bai, Yingliang Liu","doi":"10.1007/s11666-024-01795-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Fe-based alloy coatings were prepared on the surface of ductile iron by laser cladding. To improve its wear resistance and consider the economic and time cost of other post-treatment processes, laser remelting was chosen to strengthen the coatings. The effect of laser remelting energy density (0−11.45 J/mm<sup>2</sup>) on the phase composition, microstructure evolution, hardness, and wear resistance of the coatings were investigated. The results show that the coating consists of γ-(Fe, Cr) and carbides and that remelting energy density has little effect on its phase composition. After remelting, the hardness uniformity of the coating was significantly improved, but increasing the remelting energy density had little effect on it. The hardness and wear resistance of the coatings were inversely related to remelting energy density. At a low remelting energy density of 5.66 J/mm<sup>2</sup>, the hardness and wear mass loss of the coating were 111.49% and 54.36% of the original coating, respectively. The mechanism for the improved hardness and wear resistance is the microstructure refinement induced by laser remelting. Increased remelting energy density reduces the microstructure refinement of the coating, but the coatings still showed good hardness and wear resistance due to the diffuse distribution of carbides at higher remelting energy density conditions of 9.43-11.45 J/mm<sup>2</sup>.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 5","pages":"1455 - 1471"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01795-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, Fe-based alloy coatings were prepared on the surface of ductile iron by laser cladding. To improve its wear resistance and consider the economic and time cost of other post-treatment processes, laser remelting was chosen to strengthen the coatings. The effect of laser remelting energy density (0−11.45 J/mm2) on the phase composition, microstructure evolution, hardness, and wear resistance of the coatings were investigated. The results show that the coating consists of γ-(Fe, Cr) and carbides and that remelting energy density has little effect on its phase composition. After remelting, the hardness uniformity of the coating was significantly improved, but increasing the remelting energy density had little effect on it. The hardness and wear resistance of the coatings were inversely related to remelting energy density. At a low remelting energy density of 5.66 J/mm2, the hardness and wear mass loss of the coating were 111.49% and 54.36% of the original coating, respectively. The mechanism for the improved hardness and wear resistance is the microstructure refinement induced by laser remelting. Increased remelting energy density reduces the microstructure refinement of the coating, but the coatings still showed good hardness and wear resistance due to the diffuse distribution of carbides at higher remelting energy density conditions of 9.43-11.45 J/mm2.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.