{"title":"Linearizing Binary Optimization Problems Using Variable Posets for Ising Machines","authors":"Kentaro Ohno;Nozomu Togawa","doi":"10.1109/TETC.2024.3403871","DOIUrl":null,"url":null,"abstract":"Ising machines are next-generation computers expected to efficiently sample near-optimal solutions of combinatorial optimization problems. Combinatorial optimization problems are modeled as quadratic unconstrained binary optimization (QUBO) problems to apply an Ising machine. However, current state-of-the-art Ising machines still often fail to output near-optimal solutions due to the complicated energy landscape of QUBO problems. Furthermore, the physical implementation of Ising machines severely restricts the size of QUBO problems to be input as a result of limited hardware graph structures. In this study, we take a new approach to these challenges by injecting auxiliary penalties preserving the optimum, which reduces quadratic terms in QUBO objective functions. The process simultaneously simplifies the energy landscape of QUBO problems, allowing the search for near-optimal solutions, and makes QUBO problems sparser, facilitating encoding into Ising machines with restriction on the hardware graph structure. We propose linearization of QUBO problems using variable posets as an outcome of the approach. By applying the proposed method to synthetic QUBO instances and to multi-dimensional knapsack problems, we empirically validate the effects on enhancing minor-embedding of QUBO problems and the performance of Ising machines.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"13 1","pages":"250-261"},"PeriodicalIF":5.1000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542662","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10542662/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Ising machines are next-generation computers expected to efficiently sample near-optimal solutions of combinatorial optimization problems. Combinatorial optimization problems are modeled as quadratic unconstrained binary optimization (QUBO) problems to apply an Ising machine. However, current state-of-the-art Ising machines still often fail to output near-optimal solutions due to the complicated energy landscape of QUBO problems. Furthermore, the physical implementation of Ising machines severely restricts the size of QUBO problems to be input as a result of limited hardware graph structures. In this study, we take a new approach to these challenges by injecting auxiliary penalties preserving the optimum, which reduces quadratic terms in QUBO objective functions. The process simultaneously simplifies the energy landscape of QUBO problems, allowing the search for near-optimal solutions, and makes QUBO problems sparser, facilitating encoding into Ising machines with restriction on the hardware graph structure. We propose linearization of QUBO problems using variable posets as an outcome of the approach. By applying the proposed method to synthetic QUBO instances and to multi-dimensional knapsack problems, we empirically validate the effects on enhancing minor-embedding of QUBO problems and the performance of Ising machines.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.