Trade-Off Among Cavitation Erosion Resistance, Corrosion Resistance, and Antifouling Properties of HVOF-Sprayed WC-CoCr Coating via Adding Stainless Steel and Copper
IF 3.2 3区 材料科学Q2 MATERIALS SCIENCE, COATINGS & FILMS
Zhe Guo, Xiaomei Liu, Ye Tian, Ping Zhou, Miao Yu, Jin Liu, Xu Yin, Rui Yang, Hua Li
{"title":"Trade-Off Among Cavitation Erosion Resistance, Corrosion Resistance, and Antifouling Properties of HVOF-Sprayed WC-CoCr Coating via Adding Stainless Steel and Copper","authors":"Zhe Guo, Xiaomei Liu, Ye Tian, Ping Zhou, Miao Yu, Jin Liu, Xu Yin, Rui Yang, Hua Li","doi":"10.1007/s11666-024-01792-6","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigated the trade-off among cavitation erosion resistance, corrosion resistance, and antifouling properties in HVOF-sprayed WC-10Co4Cr coatings. By adding 316L stainless steel (316L) and copper to WC-10Co4Cr coatings, this work aimed to enhance their antifouling ability while maintaining their cavitation erosion and corrosion resistances, presenting a comprehensive evaluation of the modified coatings, including their microstructure, hardness, fracture toughness, and resistance to cavitation erosion, corrosion, and biofouling. The results revealed that Cu addition significantly improved the antifouling property but at a cost of the compromised cavitation erosion and corrosion resistances. In contrast, 316L enhanced the cavitation erosion and corrosion resistances but did not effectively improve the antifouling property. The dual addition of Cu and 316L demonstrated a balanced performance in all three aspects. This research contributed to the development of HVOF-sprayed WC-CoCr coatings suitable for marine environments, suggesting further optimization possibilities by altering Cu and 316L contents.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 5","pages":"1570 - 1584"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01792-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01792-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigated the trade-off among cavitation erosion resistance, corrosion resistance, and antifouling properties in HVOF-sprayed WC-10Co4Cr coatings. By adding 316L stainless steel (316L) and copper to WC-10Co4Cr coatings, this work aimed to enhance their antifouling ability while maintaining their cavitation erosion and corrosion resistances, presenting a comprehensive evaluation of the modified coatings, including their microstructure, hardness, fracture toughness, and resistance to cavitation erosion, corrosion, and biofouling. The results revealed that Cu addition significantly improved the antifouling property but at a cost of the compromised cavitation erosion and corrosion resistances. In contrast, 316L enhanced the cavitation erosion and corrosion resistances but did not effectively improve the antifouling property. The dual addition of Cu and 316L demonstrated a balanced performance in all three aspects. This research contributed to the development of HVOF-sprayed WC-CoCr coatings suitable for marine environments, suggesting further optimization possibilities by altering Cu and 316L contents.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.