{"title":"Implementing 4D seismic inversion based on Linear Programming techniques for CO2 monitoring at the Sleipner field CCS site in the North Sea, Norway","authors":"Ajay Pratap Singh, Satya Prakash Maurya, Ravi Kant, Kumar Hemant Singh, Raghav Singh, Manoj Kumar Srivastava, Gopal Hema, Nitin Verma","doi":"10.1007/s11600-024-01376-6","DOIUrl":null,"url":null,"abstract":"<p>This article provides a comprehensive analysis of CO<sub>2</sub> injection monitoring in the Sleipner Field. Ensuring the safe storage and containment of CO<sub>2</sub> in geological formations or assigned storage sites, especially in the carbon capture and storage (CCS) projects. In this study, a seismic inversion method incorporating linear programming sparse spike inversion was employed to observe and analyze the CO<sub>2</sub> plume in the Sleipner field, Norway. This approach enhances the understanding of the dynamics and behavior of the CO<sub>2</sub> injection, providing valuable insights into the monitoring and assessment of CCS operations in the Sleipner field. The foundational dataset includes 3D post-stack seismic data from the year 1994, with special emphasis on the monitoring data collected in 1999, following four years of CO<sub>2</sub> sequestration. The analysis utilized synthetic data to investigate alterations in seismic amplitude, highlighting that amplitude variations were more prominent compared to variations in velocity and density. The findings highlight noticeable shifts in P-wave velocity, signifying a significant 29% reduction, with the most substantial decrease occurring within the 0 to 30% CO<sub>2</sub> saturation range. Correspondingly, density changes align with trace variations, demonstrating only a 2–3% reduction in density as gas saturation increases from 0 to 30%. Beyond 30% saturation, density exhibits a further decrease of 30%. The traces collectively reveal a consistent trend, showcasing a 32% reduction in impedance as CO<sub>2</sub> saturation levels rise. Through the cross-equalization process, it was observed that the initial data repeatability was low, indicated by a normalized root mean square (NRMS) value of 0.6508. However, significant improvement was achieved, bringing the NRMS value to a more satisfactory level of 0.5581. This improvement underscored the alignment of features both above and below the reservoir, underscoring the efficacy of the cross-equalization technique. The outcomes of the 4D inversion provided insights into the distribution of CO<sub>2</sub> within the reservoir, revealing upward migration. Importantly, the results confirmed the secure storage of CO<sub>2</sub> within the reservoir, affirming the integrity of the overlying cap layer.</p>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"49 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11600-024-01376-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides a comprehensive analysis of CO2 injection monitoring in the Sleipner Field. Ensuring the safe storage and containment of CO2 in geological formations or assigned storage sites, especially in the carbon capture and storage (CCS) projects. In this study, a seismic inversion method incorporating linear programming sparse spike inversion was employed to observe and analyze the CO2 plume in the Sleipner field, Norway. This approach enhances the understanding of the dynamics and behavior of the CO2 injection, providing valuable insights into the monitoring and assessment of CCS operations in the Sleipner field. The foundational dataset includes 3D post-stack seismic data from the year 1994, with special emphasis on the monitoring data collected in 1999, following four years of CO2 sequestration. The analysis utilized synthetic data to investigate alterations in seismic amplitude, highlighting that amplitude variations were more prominent compared to variations in velocity and density. The findings highlight noticeable shifts in P-wave velocity, signifying a significant 29% reduction, with the most substantial decrease occurring within the 0 to 30% CO2 saturation range. Correspondingly, density changes align with trace variations, demonstrating only a 2–3% reduction in density as gas saturation increases from 0 to 30%. Beyond 30% saturation, density exhibits a further decrease of 30%. The traces collectively reveal a consistent trend, showcasing a 32% reduction in impedance as CO2 saturation levels rise. Through the cross-equalization process, it was observed that the initial data repeatability was low, indicated by a normalized root mean square (NRMS) value of 0.6508. However, significant improvement was achieved, bringing the NRMS value to a more satisfactory level of 0.5581. This improvement underscored the alignment of features both above and below the reservoir, underscoring the efficacy of the cross-equalization technique. The outcomes of the 4D inversion provided insights into the distribution of CO2 within the reservoir, revealing upward migration. Importantly, the results confirmed the secure storage of CO2 within the reservoir, affirming the integrity of the overlying cap layer.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.