{"title":"Bilin-regulated LHCA1 accumulation is independent of photoreceptors PHOT, CRYs, and UVR8 in Chlamydomonas reinhardtii","authors":"Chunhui Hou, Weiqing Zhang, Rui Deng, Hui Xiong, Deqiang Duanmu","doi":"10.1111/gcbb.13168","DOIUrl":null,"url":null,"abstract":"<p>Light is a critical environmental signal that is perceived by various photoreceptors and is of great significance in the photosynthetic growth of algae and plants. The phytochrome-lacking model green alga <i>Chlamydomonas reinhardtii</i> possesses heme oxygenase (HMOX1) and phycocyanobilin ferredoxin oxidoreductase (PCYA1) to synthesize the linear tetrapyrrole bilin from heme in the chloroplast. The <i>hmox1</i> mutant has photosynthetic growth deficiency and accumulation of photosystem I proteins such as LHCA1 is severely inhibited, and these defects could be rescued by exogenous bilin feeding in a blue light-dependent manner. To investigate the contribution of the typical blue/ultraviolet light photoreceptors PHOT, aCRY, pCRY, and UVR8 in the process of bilin and blue light-dependent recovery of LHCA1 protein in <i>hmox1</i>, we generated double mutants of these photoreceptors in <i>hmox1</i>, as well as a triple mutant of <i>phot uvr8 hmox1</i>, to analyze the LHCA1 protein abundance in these mutants. Results clearly showed that PHOT, CRYs, and UVR8 do not participate in this process. In addition, transcriptome profiling analysis of the <i>hmox1</i> and its genetically complemented strain <i>ho1</i>C2 during dark-to-blue light transition revealed a total of 269 blue light-responsive genes independent of bilin (|fold change| ≥ 2). RNA-seq also identified a set of 249 differentially expressed genes that are dependent on both blue light and bilin. These findings provide valuable insights for elucidating the role of bilin in mediating blue light signaling pathways in Chlamydomonas.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 7","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13168","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13168","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Light is a critical environmental signal that is perceived by various photoreceptors and is of great significance in the photosynthetic growth of algae and plants. The phytochrome-lacking model green alga Chlamydomonas reinhardtii possesses heme oxygenase (HMOX1) and phycocyanobilin ferredoxin oxidoreductase (PCYA1) to synthesize the linear tetrapyrrole bilin from heme in the chloroplast. The hmox1 mutant has photosynthetic growth deficiency and accumulation of photosystem I proteins such as LHCA1 is severely inhibited, and these defects could be rescued by exogenous bilin feeding in a blue light-dependent manner. To investigate the contribution of the typical blue/ultraviolet light photoreceptors PHOT, aCRY, pCRY, and UVR8 in the process of bilin and blue light-dependent recovery of LHCA1 protein in hmox1, we generated double mutants of these photoreceptors in hmox1, as well as a triple mutant of phot uvr8 hmox1, to analyze the LHCA1 protein abundance in these mutants. Results clearly showed that PHOT, CRYs, and UVR8 do not participate in this process. In addition, transcriptome profiling analysis of the hmox1 and its genetically complemented strain ho1C2 during dark-to-blue light transition revealed a total of 269 blue light-responsive genes independent of bilin (|fold change| ≥ 2). RNA-seq also identified a set of 249 differentially expressed genes that are dependent on both blue light and bilin. These findings provide valuable insights for elucidating the role of bilin in mediating blue light signaling pathways in Chlamydomonas.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.