The Squeeze & Excitation Normalization Based nnU-Net for Segmenting Head & Neck Tumors

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Juanying Xie;Ying Peng;Mingzhao Wang
{"title":"The Squeeze & Excitation Normalization Based nnU-Net for Segmenting Head & Neck Tumors","authors":"Juanying Xie;Ying Peng;Mingzhao Wang","doi":"10.23919/cje.2022.00.306","DOIUrl":null,"url":null,"abstract":"Head and neck cancer is one of the most common malignancies in the world. We propose SE-nnU-Net by adapting SE (squeeze and excitation) normalization into nnU-Net, so as to segment head and neck tumors in PET/CT images by combining advantages of SE capturing features of interest regions and nnU-Net configuring itself for a specific task. The basic module referred to convolution-ReLU-SE is designed for SE-nnU-Net. In the encoder it is combined with residual structure while in the decoder without residual structure. The loss function combines Dice loss and Focal loss. The specific data preprocessing and augmentation techniques are developed, and specific network architecture is designed. Moreover, the deep supervised mechanism is introduced to calculate the loss function using the last four layers of the decoder of SE-nnU-Net. This SE-nnU-net is applied to HECKTOR 2020 and HECKTOR 2021 challenges, respectively, using different experimental design. The experimental results show that SE-nnU-Net for HECKTOR 2020 obtained 0.745, 0.821, and 0.725 in terms of Dice, Precision, and Recall, respectively, while the SE-nnU-Net for HECKTOR 2021 obtains 0.778 and 3.088 in terms of Dice and median HD95, respectively. This SE-nnU-Net for segmenting head and neck tumors can provide auxiliary opinions for doctors' diagnoses.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 3","pages":"766-775"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543238/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Head and neck cancer is one of the most common malignancies in the world. We propose SE-nnU-Net by adapting SE (squeeze and excitation) normalization into nnU-Net, so as to segment head and neck tumors in PET/CT images by combining advantages of SE capturing features of interest regions and nnU-Net configuring itself for a specific task. The basic module referred to convolution-ReLU-SE is designed for SE-nnU-Net. In the encoder it is combined with residual structure while in the decoder without residual structure. The loss function combines Dice loss and Focal loss. The specific data preprocessing and augmentation techniques are developed, and specific network architecture is designed. Moreover, the deep supervised mechanism is introduced to calculate the loss function using the last four layers of the decoder of SE-nnU-Net. This SE-nnU-net is applied to HECKTOR 2020 and HECKTOR 2021 challenges, respectively, using different experimental design. The experimental results show that SE-nnU-Net for HECKTOR 2020 obtained 0.745, 0.821, and 0.725 in terms of Dice, Precision, and Recall, respectively, while the SE-nnU-Net for HECKTOR 2021 obtains 0.778 and 3.088 in terms of Dice and median HD95, respectively. This SE-nnU-Net for segmenting head and neck tumors can provide auxiliary opinions for doctors' diagnoses.
基于挤压和激发归一化的 nnU-Net 用于分割头颈部肿瘤
头颈部癌症是世界上最常见的恶性肿瘤之一。我们将 SE(挤压和激发)归一化技术引入 nnU-Net,结合 SE 捕捉感兴趣区域特征和 nnU-Net 为特定任务配置自身的优势,提出了 SE-nnU-Net 技术,以分割 PET/CT 图像中的头颈部肿瘤。被称为卷积-ReLU-SE 的基本模块是为 SE-nnU-Net 设计的。在编码器中,它与残差结构相结合,而在解码器中则没有残差结构。损失函数结合了 Dice 损失和 Focal 损失。开发了特定的数据预处理和增强技术,并设计了特定的网络架构。此外,还引入了深度监督机制,利用 SE-nnU 网络解码器的最后四层计算损失函数。利用不同的实验设计,该 SE-nnU 网络分别应用于 HECKTOR 2020 和 HECKTOR 2021 挑战。实验结果表明,针对 HECKTOR 2020 的 SE-nnU-Net 在 Dice、Precision 和 Recall 方面分别获得了 0.745、0.821 和 0.725 的结果,而针对 HECKTOR 2021 的 SE-nnU-Net 在 Dice 和 HD95 中值方面分别获得了 0.778 和 3.088 的结果。这种用于分割头颈部肿瘤的 SE-nnU-Net 可以为医生的诊断提供辅助意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信