Joint Optimization of Trajectory and Task Offloading for Cellular-Connected Multi-UAV Mobile Edge Computing

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jingming Xia;Yufeng Liu;Ling Tan
{"title":"Joint Optimization of Trajectory and Task Offloading for Cellular-Connected Multi-UAV Mobile Edge Computing","authors":"Jingming Xia;Yufeng Liu;Ling Tan","doi":"10.23919/cje.2022.00.159","DOIUrl":null,"url":null,"abstract":"Since the computing capacity and battery energy of unmanned aerial vehicle (UAV) are constrained, UAV as aerial user is hard to handle the high computational complexity and time-sensitive applications. This paper investigates a cellular-connected multi-UAV network supported by mobile edge computing. Multiple UAVs carrying tasks fly from a given initial position to a termination position within a specified time. To handle the large number of tasks carried by UAVs, we propose a energy cost of all UAVs based problem to determine how many tasks should be offloaded to high-altitude balloons (HABs) for computing, where UAV-HAB association, the trajectory of UAV, and calculation task splitting are jointly optimized. However, the formulated problem has nonconvex structure. Hence, an efficient iterative algorithm by applying successive convex approximation and the block coordinate descent methods is put forward. Specifically, in each iteration, the UAV-HAB association, calculation task splitting, and UAV trajec-tory are alternately optimized. Especially, for the nonconvex UAV trajectory optimization problem, an approximate convex optimization problem is settled. The numerical results indicate that the scheme of this paper proposed is guaranteed to converge and also significantly reduces the entire power consumption of all UAVs compared to the benchmark schemes.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 3","pages":"823-832"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543192","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543192/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Since the computing capacity and battery energy of unmanned aerial vehicle (UAV) are constrained, UAV as aerial user is hard to handle the high computational complexity and time-sensitive applications. This paper investigates a cellular-connected multi-UAV network supported by mobile edge computing. Multiple UAVs carrying tasks fly from a given initial position to a termination position within a specified time. To handle the large number of tasks carried by UAVs, we propose a energy cost of all UAVs based problem to determine how many tasks should be offloaded to high-altitude balloons (HABs) for computing, where UAV-HAB association, the trajectory of UAV, and calculation task splitting are jointly optimized. However, the formulated problem has nonconvex structure. Hence, an efficient iterative algorithm by applying successive convex approximation and the block coordinate descent methods is put forward. Specifically, in each iteration, the UAV-HAB association, calculation task splitting, and UAV trajec-tory are alternately optimized. Especially, for the nonconvex UAV trajectory optimization problem, an approximate convex optimization problem is settled. The numerical results indicate that the scheme of this paper proposed is guaranteed to converge and also significantly reduces the entire power consumption of all UAVs compared to the benchmark schemes.
为蜂窝连接的多无人机移动边缘计算联合优化轨迹和任务卸载
由于无人机(UAV)的计算能力和电池能量受到限制,作为空中用户的无人机很难处理高计算复杂性和时间敏感性的应用。本文研究了一种由移动边缘计算支持的蜂窝连接多无人机网络。多个无人机携带任务,在规定时间内从给定的初始位置飞到终止位置。为了处理无人机携带的大量任务,我们提出了一个基于所有无人机能量成本的问题,以确定有多少任务应卸载到高空气球(HABs)上进行计算,其中无人机与 HAB 的关联、无人机的轨迹和计算任务的分割是共同优化的。然而,所提出的问题具有非凸结构。因此,本文提出了一种应用连续凸逼近法和块坐标下降法的高效迭代算法。具体来说,在每次迭代中,交替优化 UAV-HAB 关联、计算任务分割和 UAV 轨迹。特别是对于非凸的无人机轨迹优化问题,解决了一个近似凸优化问题。数值结果表明,本文提出的方案保证了收敛性,与基准方案相比,还显著降低了所有无人机的总功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信