{"title":"YiQi GuBen formula alleviates airway inflammation and airway remodeling in OVA-induced asthma mice through TLR4/NF-κB signaling pathway.","authors":"Yibu Kong, Zhongtian Wang, Hongjun Yu, Aiai Dong, Yongfu Song, Lei Guo, Jinpu Zhu, Liping Sun, Yinan Guo","doi":"10.1093/jpp/rgae064","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We aim to investigate the effect of YiQi GuBen formula (YQGB) on airway inflammation and airway remodeling in the ovalbumin (OVA)-induced asthma model to further explore the potential mechanisms of YQGB in treating allergic asthma.</p><p><strong>Methods: </strong>Mice were divided into five groups randomly (n = 10): the control group, OVA group, OVA + Dex (0.1 mg/kg) group, OVA + low-dose (1.1 g/kg) YQGB group, and OVA + high-dose (2.2 g/kg) YQGB group. Inflammatory cell count and IgE were detected in bronchoalveolar lavage fluid (BALF). Lung tissue histopathology was observed by using H&E, PAS, Masson, and immunohistochemistry staining. qRT-PCR and western blot were applied to analyze key genes and proteins associated with TLR4 and NF-κB signaling pathways.</p><p><strong>Results: </strong>In OVA-induced asthma mice, YQGB decreased eosinophils and IgE in BALF. YQGB alleviated the OVA-induced inflammatory infiltration and declined IL-4, IL-5, IL-13, Eotaxin, ECP, GM-CSF, LTC4, and LTD4. YQGB attenuated the OVA-induced goblet cell metaplasia and mucus hypersecretion. YQGB mitigated the OVA-induced subepithelial fibrosis and lowered TGF-β1, E-Cadherin, Vimentin, and Fibronectin. YQGB ameliorated the OVA-induced airway smooth muscle thickening and lessened α-SMA and PDGF levels. YQGB reduced the expression of TLR4, MyD88, TRAF6, IκBα, and p65 mRNAs, and IκBα and p-p65 protein levels were also reduced.</p><p><strong>Conclusion: </strong>YQGB exhibits the anti-asthma effect by reducing airway inflammation and airway remodeling through suppressing TLR4/NF-κB signaling pathway, and is worth promoting clinically.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: We aim to investigate the effect of YiQi GuBen formula (YQGB) on airway inflammation and airway remodeling in the ovalbumin (OVA)-induced asthma model to further explore the potential mechanisms of YQGB in treating allergic asthma.
Methods: Mice were divided into five groups randomly (n = 10): the control group, OVA group, OVA + Dex (0.1 mg/kg) group, OVA + low-dose (1.1 g/kg) YQGB group, and OVA + high-dose (2.2 g/kg) YQGB group. Inflammatory cell count and IgE were detected in bronchoalveolar lavage fluid (BALF). Lung tissue histopathology was observed by using H&E, PAS, Masson, and immunohistochemistry staining. qRT-PCR and western blot were applied to analyze key genes and proteins associated with TLR4 and NF-κB signaling pathways.
Results: In OVA-induced asthma mice, YQGB decreased eosinophils and IgE in BALF. YQGB alleviated the OVA-induced inflammatory infiltration and declined IL-4, IL-5, IL-13, Eotaxin, ECP, GM-CSF, LTC4, and LTD4. YQGB attenuated the OVA-induced goblet cell metaplasia and mucus hypersecretion. YQGB mitigated the OVA-induced subepithelial fibrosis and lowered TGF-β1, E-Cadherin, Vimentin, and Fibronectin. YQGB ameliorated the OVA-induced airway smooth muscle thickening and lessened α-SMA and PDGF levels. YQGB reduced the expression of TLR4, MyD88, TRAF6, IκBα, and p65 mRNAs, and IκBα and p-p65 protein levels were also reduced.
Conclusion: YQGB exhibits the anti-asthma effect by reducing airway inflammation and airway remodeling through suppressing TLR4/NF-κB signaling pathway, and is worth promoting clinically.
期刊介绍:
JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.