Analysis of optical coherence tomography biomarker probability detection in central serous chorioretinopathy by using an artificial intelligence-based biomarker detector.
Lorenzo Ferro Desideri, Rodrigo Anguita, Lieselotte E Berger, Helena M A Feenstra, Davide Scandella, Raphael Sznitman, Camiel J F Boon, Elon H C van Dijk, Martin S Zinkernagel
{"title":"Analysis of optical coherence tomography biomarker probability detection in central serous chorioretinopathy by using an artificial intelligence-based biomarker detector.","authors":"Lorenzo Ferro Desideri, Rodrigo Anguita, Lieselotte E Berger, Helena M A Feenstra, Davide Scandella, Raphael Sznitman, Camiel J F Boon, Elon H C van Dijk, Martin S Zinkernagel","doi":"10.1186/s40942-024-00560-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To adopt a novel artificial intelligence (AI) optical coherence tomography (OCT)-based program to identify the presence of biomarkers associated with central serous chorioretinopathy (CSC) and whether these can differentiate between acute and chronic central serous chorioretinopathy (aCSC and cCSC).</p><p><strong>Methods: </strong>Multicenter, observational study with a retrospective design enrolling treatment-naïve patients with aCSC and cCSC. The diagnosis of aCSC and cCSC was established with multimodal imaging and for the current study subsequent follow-up visits were also considered. Baseline OCTs were analyzed by an AI-based platform (Discovery® OCT Fluid and Biomarker Detector, RetinAI AG, Switzerland). This software allows to detect several different biomarkers in each single OCT scan, including subretinal fluid (SRF), intraretinal fluid (IRF), hyperreflective foci (HF) and flat irregular pigment epithelium detachment (FIPED). The presence of SRF was considered as a necessary inclusion criterion for performing biomarker analysis and OCT slabs without SRF presence were excluded from the analysis.</p><p><strong>Results: </strong>Overall, 160 eyes of 144 patients with CSC were enrolled, out of which 100 (62.5%) eyes were diagnosed with cCSC and 60 eyes (34.5%) with aCSC. In the OCT slabs showing presence of SRF the presence of biomarkers was found to be clinically relevant (> 50%) for HF and FIPED in aCSC and cCSC. HF had an average percentage of 81% (± 20) in the cCSC group and 81% (± 15) in the aCSC group (p = 0.4295) and FIPED had a mean percentage of 88% (± 18) in cCSC vs. 89% (± 15) in the aCSC (p = 0.3197).</p><p><strong>Conclusion: </strong>We demonstrate that HF and FIPED are OCT biomarkers positively associated with CSC when present at baseline. While both HF and FIPED biomarkers could aid in CSC diagnosis, they could not distinguish between aCSC and cCSC at the first visit. AI-assisted biomarker detection shows promise for reducing invasive imaging needs, but further validation through longitudinal studies is needed.</p>","PeriodicalId":14289,"journal":{"name":"International Journal of Retina and Vitreous","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Retina and Vitreous","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40942-024-00560-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To adopt a novel artificial intelligence (AI) optical coherence tomography (OCT)-based program to identify the presence of biomarkers associated with central serous chorioretinopathy (CSC) and whether these can differentiate between acute and chronic central serous chorioretinopathy (aCSC and cCSC).
Methods: Multicenter, observational study with a retrospective design enrolling treatment-naïve patients with aCSC and cCSC. The diagnosis of aCSC and cCSC was established with multimodal imaging and for the current study subsequent follow-up visits were also considered. Baseline OCTs were analyzed by an AI-based platform (Discovery® OCT Fluid and Biomarker Detector, RetinAI AG, Switzerland). This software allows to detect several different biomarkers in each single OCT scan, including subretinal fluid (SRF), intraretinal fluid (IRF), hyperreflective foci (HF) and flat irregular pigment epithelium detachment (FIPED). The presence of SRF was considered as a necessary inclusion criterion for performing biomarker analysis and OCT slabs without SRF presence were excluded from the analysis.
Results: Overall, 160 eyes of 144 patients with CSC were enrolled, out of which 100 (62.5%) eyes were diagnosed with cCSC and 60 eyes (34.5%) with aCSC. In the OCT slabs showing presence of SRF the presence of biomarkers was found to be clinically relevant (> 50%) for HF and FIPED in aCSC and cCSC. HF had an average percentage of 81% (± 20) in the cCSC group and 81% (± 15) in the aCSC group (p = 0.4295) and FIPED had a mean percentage of 88% (± 18) in cCSC vs. 89% (± 15) in the aCSC (p = 0.3197).
Conclusion: We demonstrate that HF and FIPED are OCT biomarkers positively associated with CSC when present at baseline. While both HF and FIPED biomarkers could aid in CSC diagnosis, they could not distinguish between aCSC and cCSC at the first visit. AI-assisted biomarker detection shows promise for reducing invasive imaging needs, but further validation through longitudinal studies is needed.
期刊介绍:
International Journal of Retina and Vitreous focuses on the ophthalmic subspecialty of vitreoretinal disorders. The journal presents original articles on new approaches to diagnosis, outcomes of clinical trials, innovations in pharmacological therapy and surgical techniques, as well as basic science advances that impact clinical practice. Topical areas include, but are not limited to: -Imaging of the retina, choroid and vitreous -Innovations in optical coherence tomography (OCT) -Small-gauge vitrectomy, retinal detachment, chromovitrectomy -Electroretinography (ERG), microperimetry, other functional tests -Intraocular tumors -Retinal pharmacotherapy & drug delivery -Diabetic retinopathy & other vascular diseases -Age-related macular degeneration (AMD) & other macular entities