Ana Filipa Ferreira, Juliana Machado-Simões, Inês Moniz, Maria Soares, Alexandra Carvalho, Patrícia Diniz, João Ramalho-Santos, Ana Paula Sousa, Luís Lopes-da-Costa, Teresa Almeida-Santos
{"title":"Chemical reversion of age-related oocyte dysfunction fails to enhance embryo development in a bovine model of postovulatory aging.","authors":"Ana Filipa Ferreira, Juliana Machado-Simões, Inês Moniz, Maria Soares, Alexandra Carvalho, Patrícia Diniz, João Ramalho-Santos, Ana Paula Sousa, Luís Lopes-da-Costa, Teresa Almeida-Santos","doi":"10.1007/s10815-024-03151-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>There are no clinical treatments to prevent/revert age-related alterations associated with oocyte competence decline in the context of advanced maternal age. Those alterations have been attributed to oxidative stress and mitochondrial dysfunction. Our study aimed to test the hypothesis that in vitro maturation (IVM) medium supplementation with antioxidants (resveratrol or phloretin) may revert age-related oocyte competence decline.</p><p><strong>Methods: </strong>Bovine immature oocytes were matured in vitro for 23 h (young) and 30 h (aged). Postovulatory aged oocytes (control group) and embryos obtained after fertilization were examined and compared with oocytes supplemented with either 2 μM of resveratrol or 6 μM phloretin (treatment groups) during IVM.</p><p><strong>Results: </strong>Aged oocytes had a significantly lower mitochondrial mass and proportion of mitochondrial clustered pattern, lower ooplasmic volume, higher ROS, lower sirtuin-1 protein level, and a lower blastocyst rate in comparison to young oocytes, indicating that postovulatory oocytes have a lower quality and developmental competence, thus validating our experimental model. Supplementation of IVM medium with antioxidants prevented the generation of ROS and restored the active mitochondrial mass and pattern characteristic of younger oocytes. Moreover, sirtuin-1 protein levels were also restored but only following incubation with resveratrol. Despite these findings, the blastocyst rate of treatment groups was not significantly different from the control group, indicating that resveratrol and phloretin could not restore the oocyte competence of postovulatory aged oocytes.</p><p><strong>Conclusion: </strong>Resveratrol and phloretin can both revert the age-related oxidative stress and mitochondrial dysfunction during postovulatory aging but were insufficient to enhance embryo developmental rates under our experimental conditions.</p>","PeriodicalId":15246,"journal":{"name":"Journal of Assisted Reproduction and Genetics","volume":" ","pages":"1997-2009"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Assisted Reproduction and Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10815-024-03151-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: There are no clinical treatments to prevent/revert age-related alterations associated with oocyte competence decline in the context of advanced maternal age. Those alterations have been attributed to oxidative stress and mitochondrial dysfunction. Our study aimed to test the hypothesis that in vitro maturation (IVM) medium supplementation with antioxidants (resveratrol or phloretin) may revert age-related oocyte competence decline.
Methods: Bovine immature oocytes were matured in vitro for 23 h (young) and 30 h (aged). Postovulatory aged oocytes (control group) and embryos obtained after fertilization were examined and compared with oocytes supplemented with either 2 μM of resveratrol or 6 μM phloretin (treatment groups) during IVM.
Results: Aged oocytes had a significantly lower mitochondrial mass and proportion of mitochondrial clustered pattern, lower ooplasmic volume, higher ROS, lower sirtuin-1 protein level, and a lower blastocyst rate in comparison to young oocytes, indicating that postovulatory oocytes have a lower quality and developmental competence, thus validating our experimental model. Supplementation of IVM medium with antioxidants prevented the generation of ROS and restored the active mitochondrial mass and pattern characteristic of younger oocytes. Moreover, sirtuin-1 protein levels were also restored but only following incubation with resveratrol. Despite these findings, the blastocyst rate of treatment groups was not significantly different from the control group, indicating that resveratrol and phloretin could not restore the oocyte competence of postovulatory aged oocytes.
Conclusion: Resveratrol and phloretin can both revert the age-related oxidative stress and mitochondrial dysfunction during postovulatory aging but were insufficient to enhance embryo developmental rates under our experimental conditions.
期刊介绍:
The Journal of Assisted Reproduction and Genetics publishes cellular, molecular, genetic, and epigenetic discoveries advancing our understanding of the biology and underlying mechanisms from gametogenesis to offspring health. Special emphasis is placed on the practice and evolution of assisted reproduction technologies (ARTs) with reference to the diagnosis and management of diseases affecting fertility. Our goal is to educate our readership in the translation of basic and clinical discoveries made from human or relevant animal models to the safe and efficacious practice of human ARTs. The scientific rigor and ethical standards embraced by the JARG editorial team ensures a broad international base of expertise guiding the marriage of contemporary clinical research paradigms with basic science discovery. JARG publishes original papers, minireviews, case reports, and opinion pieces often combined into special topic issues that will educate clinicians and scientists with interests in the mechanisms of human development that bear on the treatment of infertility and emerging innovations in human ARTs. The guiding principles of male and female reproductive health impacting pre- and post-conceptional viability and developmental potential are emphasized within the purview of human reproductive health in current and future generations of our species.
The journal is published in cooperation with the American Society for Reproductive Medicine, an organization of more than 8,000 physicians, researchers, nurses, technicians and other professionals dedicated to advancing knowledge and expertise in reproductive biology.