Optimizing PGRs for in vitro shoot proliferation of pomegranate with bayesian-tuned ensemble stacking regression and NSGA-II: a comparative evaluation of machine learning models.
Saeedeh Zarbakhsh, Ali Reza Shahsavar, Mohammad Soltani
{"title":"Optimizing PGRs for in vitro shoot proliferation of pomegranate with bayesian-tuned ensemble stacking regression and NSGA-II: a comparative evaluation of machine learning models.","authors":"Saeedeh Zarbakhsh, Ali Reza Shahsavar, Mohammad Soltani","doi":"10.1186/s13007-024-01211-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The process of optimizing in vitro shoot proliferation is a complicated task, as it is influenced by interactions of many factors as well as genotype. This study investigated the role of various concentrations of plant growth regulators (zeatin and gibberellic acid) in the successful in vitro shoot proliferation of three Punica granatum cultivars ('Faroogh', 'Atabaki' and 'Shirineshahvar'). Also, the utility of five Machine Learning (ML) algorithms-Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGB), Ensemble Stacking Regression (ESR) and Elastic Net Multivariate Linear Regression (ENMLR)-as modeling tools were evaluated on in vitro multiplication of pomegranate. A new automatic hyperparameter optimization method named Adaptive Tree Pazen Estimator (ATPE) was developed to tune the hyperparameters. The performance of the models was evaluated and compared using statistical indicators (MAE, RMSE, RRMSE, MAPE, R and R<sup>2</sup>), while a specific Global Performance Indicator (GPI) was introduced to rank the models based on a single parameter. Moreover, Non‑dominated Sorting Genetic Algorithm‑II (NSGA‑II) was employed to optimize the selected prediction model.</p><p><strong>Results: </strong>The results demonstrated that the ESR algorithm exhibited higher predictive accuracy in comparison to other ML algorithms. The ESR model was subsequently introduced for optimization by NSGA‑II. ESR-NSGA‑II revealed that the highest proliferation rate (3.47, 3.84, and 3.22), shoot length (2.74, 3.32, and 1.86 cm), leave number (18.18, 19.76, and 18.77), and explant survival (84.21%, 85.49%, and 56.39%) could be achieved with a medium containing 0.750, 0.654, and 0.705 mg/L zeatin, and 0.50, 0.329, and 0.347 mg/L gibberellic acid in the 'Atabaki', 'Faroogh', and 'Shirineshahvar' cultivars, respectively.</p><p><strong>Conclusions: </strong>This study demonstrates that the 'Shirineshahvar' cultivar exhibited lower shoot proliferation success compared to the other cultivars. The results indicated the good performance of ESR-NSGA-II in modeling and optimizing in vitro propagation. ESR-NSGA-II can be applied as an up-to-date and reliable computational tool for future studies in plant in vitro culture.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"82"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01211-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The process of optimizing in vitro shoot proliferation is a complicated task, as it is influenced by interactions of many factors as well as genotype. This study investigated the role of various concentrations of plant growth regulators (zeatin and gibberellic acid) in the successful in vitro shoot proliferation of three Punica granatum cultivars ('Faroogh', 'Atabaki' and 'Shirineshahvar'). Also, the utility of five Machine Learning (ML) algorithms-Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGB), Ensemble Stacking Regression (ESR) and Elastic Net Multivariate Linear Regression (ENMLR)-as modeling tools were evaluated on in vitro multiplication of pomegranate. A new automatic hyperparameter optimization method named Adaptive Tree Pazen Estimator (ATPE) was developed to tune the hyperparameters. The performance of the models was evaluated and compared using statistical indicators (MAE, RMSE, RRMSE, MAPE, R and R2), while a specific Global Performance Indicator (GPI) was introduced to rank the models based on a single parameter. Moreover, Non‑dominated Sorting Genetic Algorithm‑II (NSGA‑II) was employed to optimize the selected prediction model.
Results: The results demonstrated that the ESR algorithm exhibited higher predictive accuracy in comparison to other ML algorithms. The ESR model was subsequently introduced for optimization by NSGA‑II. ESR-NSGA‑II revealed that the highest proliferation rate (3.47, 3.84, and 3.22), shoot length (2.74, 3.32, and 1.86 cm), leave number (18.18, 19.76, and 18.77), and explant survival (84.21%, 85.49%, and 56.39%) could be achieved with a medium containing 0.750, 0.654, and 0.705 mg/L zeatin, and 0.50, 0.329, and 0.347 mg/L gibberellic acid in the 'Atabaki', 'Faroogh', and 'Shirineshahvar' cultivars, respectively.
Conclusions: This study demonstrates that the 'Shirineshahvar' cultivar exhibited lower shoot proliferation success compared to the other cultivars. The results indicated the good performance of ESR-NSGA-II in modeling and optimizing in vitro propagation. ESR-NSGA-II can be applied as an up-to-date and reliable computational tool for future studies in plant in vitro culture.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.