Chronic administration of caffeine, modafinil, AVL-3288 and CX516 induces time-dependent complex effects on cognition and mood in an animal model of sleep deprivation
{"title":"Chronic administration of caffeine, modafinil, AVL-3288 and CX516 induces time-dependent complex effects on cognition and mood in an animal model of sleep deprivation","authors":"Muhammed Cihan Güvel , Utku Aykan , Gökçen Paykal , Canan Uluoğlu","doi":"10.1016/j.pbb.2024.173793","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Caffeine and modafinil are used to reverse effects of sleep deprivation. Nicotinic alpha-7 receptor and AMPA receptor positive allosteric modulators (PAM) are also potential substances in this context. Our objective is to evaluate the effects of caffeine, modafinil, AVL-3288 (nicotinic alpha-7 PAM) and CX516 (AMPA receptor PAM) on cognition and mood in a model of sleep deprivation.</p></div><div><h3>Method</h3><p>Modified multiple platform model is used to sleep-deprive mice for 24 days, for 8 h/day. Vehicle, Modafinil (40 mg/kg), Caffeine (5 mg/kg), CX516 (10 mg/kg), and AVL3288 (1 mg/kg) were administered intraperitoneally daily. A cognitive test battery was applied every six days for four times. The battery that included elevated plus maze, novel object recognition, and sucrose preference tests was administered on consecutive days.</p></div><div><h3>Results</h3><p>Sleep deprivation decreased novel object recognition skill, but no significant difference was found in anxiety and depressive mood. Caffeine administration decreased anxiety-like behavior in short term, but this effect disappeared in chronic administration. Caffeine administration increased memory performance in chronic period. AVL group showed better memory performance in short term, but this effect disappeared in the rest of experiment. Although, in the modafinil group, no significant change in mood and memory was observed, anhedonia was observed in the chronic period in vehicle, caffeine and modafinil groups, but not in AVL-3288 and CX-516 groups.</p></div><div><h3>Conclusion</h3><p>Caffeine has anxiolytic effect in acute administration. The improvement of memory in chronic period may be associated with the neuroprotective effects of caffeine. AVL-3288 had a short-term positive effect on memory, but tolerance to these effects developed over time. Furthermore, no anhedonia was observed in AVL-3288 and CX516 groups in contrast to vehicle, caffeine and modafinil groups. This indicates that AVL-3288 and CX516 may show protective effect against depression.</p></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"241 ","pages":"Article 173793"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009130572400087X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Caffeine and modafinil are used to reverse effects of sleep deprivation. Nicotinic alpha-7 receptor and AMPA receptor positive allosteric modulators (PAM) are also potential substances in this context. Our objective is to evaluate the effects of caffeine, modafinil, AVL-3288 (nicotinic alpha-7 PAM) and CX516 (AMPA receptor PAM) on cognition and mood in a model of sleep deprivation.
Method
Modified multiple platform model is used to sleep-deprive mice for 24 days, for 8 h/day. Vehicle, Modafinil (40 mg/kg), Caffeine (5 mg/kg), CX516 (10 mg/kg), and AVL3288 (1 mg/kg) were administered intraperitoneally daily. A cognitive test battery was applied every six days for four times. The battery that included elevated plus maze, novel object recognition, and sucrose preference tests was administered on consecutive days.
Results
Sleep deprivation decreased novel object recognition skill, but no significant difference was found in anxiety and depressive mood. Caffeine administration decreased anxiety-like behavior in short term, but this effect disappeared in chronic administration. Caffeine administration increased memory performance in chronic period. AVL group showed better memory performance in short term, but this effect disappeared in the rest of experiment. Although, in the modafinil group, no significant change in mood and memory was observed, anhedonia was observed in the chronic period in vehicle, caffeine and modafinil groups, but not in AVL-3288 and CX-516 groups.
Conclusion
Caffeine has anxiolytic effect in acute administration. The improvement of memory in chronic period may be associated with the neuroprotective effects of caffeine. AVL-3288 had a short-term positive effect on memory, but tolerance to these effects developed over time. Furthermore, no anhedonia was observed in AVL-3288 and CX516 groups in contrast to vehicle, caffeine and modafinil groups. This indicates that AVL-3288 and CX516 may show protective effect against depression.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.