Identification of functional sgRNA mutants lacking canonical secondary structure using high-throughput FACS screening.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Cell reports Pub Date : 2024-06-25 Epub Date: 2024-05-31 DOI:10.1016/j.celrep.2024.114290
Zeyu Liang, Chaoyong Huang, Yan Xia, Zhaojin Ye, Shunhua Fan, Junwei Zeng, Shuyuan Guo, Xiaoyan Ma, Lichao Sun, Yi-Xin Huo
{"title":"Identification of functional sgRNA mutants lacking canonical secondary structure using high-throughput FACS screening.","authors":"Zeyu Liang, Chaoyong Huang, Yan Xia, Zhaojin Ye, Shunhua Fan, Junwei Zeng, Shuyuan Guo, Xiaoyan Ma, Lichao Sun, Yi-Xin Huo","doi":"10.1016/j.celrep.2024.114290","DOIUrl":null,"url":null,"abstract":"<p><p>Coexpressing multiple identical single guide RNAs (sgRNAs) in CRISPR-dependent engineering triggers genetic instability and phenotype loss. To provide sgRNA derivatives for efficient DNA digestion, we design a high-throughput digestion-activity-dependent positive screening strategy and astonishingly obtain functional nonrepetitive sgRNA mutants with up to 48 out of the 61 nucleotides mutated, and these nonrepetitive mutants completely lose canonical secondary sgRNA structure in simulation. Cas9-sgRNA complexes containing these noncanonical sgRNAs maintain wild-type level of digestion activities in vivo, indicating that the Cas9 protein is compatible with or is able to adjust the secondary structure of sgRNAs. Using these noncanonical sgRNAs, we achieve multiplex genetic engineering for gene knockout and base editing in microbial cell factories. Libraries of strains with rewired metabolism are constructed, and overproducers of isobutanol or 1,3-propanediol are identified by biosensor-based fluorescence-activated cell sorting (FACS). This work sheds light on the remarkable flexibility of the secondary structure of functional sgRNA.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 6","pages":"114290"},"PeriodicalIF":7.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114290","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coexpressing multiple identical single guide RNAs (sgRNAs) in CRISPR-dependent engineering triggers genetic instability and phenotype loss. To provide sgRNA derivatives for efficient DNA digestion, we design a high-throughput digestion-activity-dependent positive screening strategy and astonishingly obtain functional nonrepetitive sgRNA mutants with up to 48 out of the 61 nucleotides mutated, and these nonrepetitive mutants completely lose canonical secondary sgRNA structure in simulation. Cas9-sgRNA complexes containing these noncanonical sgRNAs maintain wild-type level of digestion activities in vivo, indicating that the Cas9 protein is compatible with or is able to adjust the secondary structure of sgRNAs. Using these noncanonical sgRNAs, we achieve multiplex genetic engineering for gene knockout and base editing in microbial cell factories. Libraries of strains with rewired metabolism are constructed, and overproducers of isobutanol or 1,3-propanediol are identified by biosensor-based fluorescence-activated cell sorting (FACS). This work sheds light on the remarkable flexibility of the secondary structure of functional sgRNA.

Abstract Image

利用高通量 FACS 筛选鉴定缺乏典型二级结构的功能性 sgRNA 突变体。
在 CRISPR 依赖性工程中共表达多个相同的单导 RNA(sgRNA)会引发遗传不稳定性和表型丢失。为了提供高效 DNA 消化的 sgRNA 衍生物,我们设计了一种高通量消化-活性依赖性正向筛选策略,并令人惊讶地获得了功能性非重复 sgRNA 突变体,61 个核苷酸中有多达 48 个发生了突变,而且这些非重复突变体在模拟中完全失去了典型的二级 sgRNA 结构。含有这些非典型 sgRNA 的 Cas9-sgRNA 复合物在体内能保持野生型水平的消化活性,这表明 Cas9 蛋白能兼容或调整 sgRNA 的二级结构。利用这些非典型 sgRNA,我们在微生物细胞工厂中实现了基因敲除和碱基编辑的多重基因工程。通过基于生物传感器的荧光激活细胞分选技术(FACS),我们构建了具有重联代谢的菌株库,并鉴定出异丁醇或 1,3-丙二醇的过度生产者。这项工作揭示了功能性 sgRNA 二级结构的显著灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信