Cristobal A. Onetto, Chris M. Ward, Steven Van Den Heuvel, Laura Hale, Kathleen Cuijvers, Anthony R. Borneman
{"title":"Temporal and spatial dynamics within the fungal microbiome of grape fermentation","authors":"Cristobal A. Onetto, Chris M. Ward, Steven Van Den Heuvel, Laura Hale, Kathleen Cuijvers, Anthony R. Borneman","doi":"10.1111/1462-2920.16660","DOIUrl":null,"url":null,"abstract":"<p>Over 6 years, we conducted an extensive survey of spontaneous grape fermentations, examining 3105 fungal microbiomes across 14 distinct grape-growing regions. Our investigation into the biodiversity of these fermentations revealed that a small number of highly abundant genera form the core of the initial grape juice microbiome. Consistent with previous studies, we found that the region of origin had the most significant impact on microbial diversity patterns. We also discovered that certain taxa were consistently associated with specific geographical locations and grape varieties, although these taxa represented only a minor portion of the overall diversity in our dataset. Through unsupervised clustering and dimensionality reduction analysis, we identified three unique community types, each exhibiting variations in the abundance of key genera. When we projected these genera onto global branches, it suggested that microbiomes transition between these three broad community types. We further investigated the microbial community composition throughout the fermentation process. Our observations indicated that the initial microbial community composition could predict the diversity during the early stages of fermentation. Notably, <i>Hanseniaspora uvarum</i> emerged as the primary non-<i>Saccharomyces</i> species within this large collection of samples.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16660","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over 6 years, we conducted an extensive survey of spontaneous grape fermentations, examining 3105 fungal microbiomes across 14 distinct grape-growing regions. Our investigation into the biodiversity of these fermentations revealed that a small number of highly abundant genera form the core of the initial grape juice microbiome. Consistent with previous studies, we found that the region of origin had the most significant impact on microbial diversity patterns. We also discovered that certain taxa were consistently associated with specific geographical locations and grape varieties, although these taxa represented only a minor portion of the overall diversity in our dataset. Through unsupervised clustering and dimensionality reduction analysis, we identified three unique community types, each exhibiting variations in the abundance of key genera. When we projected these genera onto global branches, it suggested that microbiomes transition between these three broad community types. We further investigated the microbial community composition throughout the fermentation process. Our observations indicated that the initial microbial community composition could predict the diversity during the early stages of fermentation. Notably, Hanseniaspora uvarum emerged as the primary non-Saccharomyces species within this large collection of samples.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens