Quantum computation of frequency-domain molecular response properties using a three-qubit iToffoli gate

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Shi-Ning Sun, Brian Marinelli, Jin Ming Koh, Yosep Kim, Long B. Nguyen, Larry Chen, John Mark Kreikebaum, David I. Santiago, Irfan Siddiqi, Austin J. Minnich
{"title":"Quantum computation of frequency-domain molecular response properties using a three-qubit iToffoli gate","authors":"Shi-Ning Sun, Brian Marinelli, Jin Ming Koh, Yosep Kim, Long B. Nguyen, Larry Chen, John Mark Kreikebaum, David I. Santiago, Irfan Siddiqi, Austin J. Minnich","doi":"10.1038/s41534-024-00850-9","DOIUrl":null,"url":null,"abstract":"<p>The quantum computation of molecular response properties on near-term quantum hardware is a topic of substantial interest. Computing these properties directly in the frequency domain is desirable, but the circuits require large depth if the typical hardware gate set consisting of single- and two-qubit gates is used. While high-fidelity multipartite gates have been reported recently, their integration into quantum simulation and the demonstration of improved accuracy of the observable properties remains to be shown. Here, we report the application of a high-fidelity multipartite gate, the iToffoli gate, to the computation of frequency-domain response properties of diatomic molecules. The iToffoli gate enables a ~50% reduction in circuit depth and ~40% reduction in circuit execution time compared to the traditional gate set. We show that the molecular properties obtained with the iToffoli gate exhibit comparable or better agreement with theory than those obtained with the native CZ gates. Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in quantum simulation, with diverse potential applications to near-term quantum computation.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"50 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00850-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The quantum computation of molecular response properties on near-term quantum hardware is a topic of substantial interest. Computing these properties directly in the frequency domain is desirable, but the circuits require large depth if the typical hardware gate set consisting of single- and two-qubit gates is used. While high-fidelity multipartite gates have been reported recently, their integration into quantum simulation and the demonstration of improved accuracy of the observable properties remains to be shown. Here, we report the application of a high-fidelity multipartite gate, the iToffoli gate, to the computation of frequency-domain response properties of diatomic molecules. The iToffoli gate enables a ~50% reduction in circuit depth and ~40% reduction in circuit execution time compared to the traditional gate set. We show that the molecular properties obtained with the iToffoli gate exhibit comparable or better agreement with theory than those obtained with the native CZ gates. Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in quantum simulation, with diverse potential applications to near-term quantum computation.

Abstract Image

利用三量子位 iToffoli 门实现频域分子响应特性的量子计算
在近期量子硬件上对分子响应特性进行量子计算是一个备受关注的课题。直接在频域计算这些特性是可取的,但如果使用由单量子比特和双量子比特门组成的典型硬件门集,则电路需要很大的深度。虽然最近已有高保真多比特门的报道,但将其集成到量子模拟中并证明可观测特性的精确度有所提高仍有待证明。在此,我们报告了高保真多分立门 iToffoli 门在计算二原子分子频域响应特性中的应用。与传统门集相比,iToffoli 门可将电路深度减少约 50%,将电路执行时间减少约 40%。我们的研究表明,使用 iToffoli 门获得的分子特性与理论的一致性相当,甚至优于使用原生 CZ 门获得的分子特性。我们的工作是在量子模拟中实际使用原生多量子比特门的首次演示之一,在近期量子计算中具有多种潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信