Xiaohe Zhang, Cathleen E. Jones, Marc Simard, Paola Passalacqua, Talib Oliver-Cabrera, Sergio Fagherazzi
{"title":"Vegetation promotes flow retardation and retention in deltaic wetlands","authors":"Xiaohe Zhang, Cathleen E. Jones, Marc Simard, Paola Passalacqua, Talib Oliver-Cabrera, Sergio Fagherazzi","doi":"10.1002/lol2.10376","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new approach to observe the impact of vegetation on tidal flow retardation and retention at large spatial scales. Using radar interferometry and in situ water level gauge measurements during low tide, we find that vegetation in deltaic intertidal zones of the Wax Lake Delta, Louisiana, causes significant tidal distortion with both a delay (between 80 and 140 min) and amplitude reduction (~ 20 cm). The natural vegetation front delays the ebb tide, which increases the minimum water level and hydro-period inside the deltaic islands, resulting in better conditions for wetland species colonizing low elevations. This positive feedback between vegetation and hydraulics demonstrates the self-organization functionality of vegetation in the geomorphological evolution of deltas, which contributes to deltaic stability.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 5","pages":"644-652"},"PeriodicalIF":5.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10376","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10376","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new approach to observe the impact of vegetation on tidal flow retardation and retention at large spatial scales. Using radar interferometry and in situ water level gauge measurements during low tide, we find that vegetation in deltaic intertidal zones of the Wax Lake Delta, Louisiana, causes significant tidal distortion with both a delay (between 80 and 140 min) and amplitude reduction (~ 20 cm). The natural vegetation front delays the ebb tide, which increases the minimum water level and hydro-period inside the deltaic islands, resulting in better conditions for wetland species colonizing low elevations. This positive feedback between vegetation and hydraulics demonstrates the self-organization functionality of vegetation in the geomorphological evolution of deltas, which contributes to deltaic stability.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.