{"title":"Chemical tools for unpicking plant specialised metabolic pathways","authors":"Benedikt Seligmann , Shenyu Liu , Jakob Franke","doi":"10.1016/j.pbi.2024.102554","DOIUrl":null,"url":null,"abstract":"<div><p>Elucidating the biochemical pathways of specialised metabolites in plants is key to enable or improve their sustainable biotechnological production. Chemical tools can greatly facilitate the discovery of biosynthetic genes and enzymes. Here, we summarise transdisciplinary approaches where methods from chemistry and chemical biology helped to overcome key challenges of pathway elucidation. Based on recent examples, we describe how state-of-the-art isotope labelling experiments can guide the selection of biosynthetic gene candidates, how affinity-based probes enable the identification of novel enzymes, how semisynthesis can improve the availability of elusive pathway intermediates, and how biomimetic reactions provide a better understanding of inherent chemical reactivity. We anticipate that a wider application of such chemical methods will accelerate the pace of pathway elucidation in plants.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000451/pdfft?md5=0d15c185e80b62b4200a38c84bce7bf0&pid=1-s2.0-S1369526624000451-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000451","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the biochemical pathways of specialised metabolites in plants is key to enable or improve their sustainable biotechnological production. Chemical tools can greatly facilitate the discovery of biosynthetic genes and enzymes. Here, we summarise transdisciplinary approaches where methods from chemistry and chemical biology helped to overcome key challenges of pathway elucidation. Based on recent examples, we describe how state-of-the-art isotope labelling experiments can guide the selection of biosynthetic gene candidates, how affinity-based probes enable the identification of novel enzymes, how semisynthesis can improve the availability of elusive pathway intermediates, and how biomimetic reactions provide a better understanding of inherent chemical reactivity. We anticipate that a wider application of such chemical methods will accelerate the pace of pathway elucidation in plants.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.