{"title":"General design of high-performance and textured layered thermoelectric materials via stacking of mechanically exfoliated crystals","authors":"","doi":"10.1016/j.joule.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>Layered materials exhibit potential for thermoelectric<span><span> applications, which are reliant on microstructural texture for high performance. In this work, we present layered crystal stacking hot deformation (LCSHD), which leverages anisotropic crystal structures to induce rapid texture formation, leading to high thermoelectric performance. Taking n-type </span>bismuth telluride (Bi</span></span><sub>2</sub>Te<sub>3</sub>) as a representative, the LCSHD method contributed to a record-high power factor (<em>PF</em>) of 45 μW cm<sup>−1</sup> K<sup>−2</sup><span><span> in polycrystals. Additionally, the dislocation tangle and low-angle grain boundary can be found in the LCSHD sample, producing low lattice </span>thermal conductivity and a remarkable </span><em>ZT</em> value of 1.2. Benefiting from a reliable high <em>ZT</em>, we prepared a seven-pair Bi<sub>2</sub>Te<sub>3</sub>-based module, which displayed an extraordinary conversion efficiency of 6.4% and competitive refrigeration performance. In addition, a significant improvement of <em>ZT</em> value in other layered materials, including SnSe<sub>2</sub><span> and SnSe, was also demonstrated. Our finding offers novel avenues for texture engineering, facilitating the design of high-performance layered thermoelectric materials.</span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 8","pages":"Pages 2412-2424"},"PeriodicalIF":38.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002344","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Layered materials exhibit potential for thermoelectric applications, which are reliant on microstructural texture for high performance. In this work, we present layered crystal stacking hot deformation (LCSHD), which leverages anisotropic crystal structures to induce rapid texture formation, leading to high thermoelectric performance. Taking n-type bismuth telluride (Bi2Te3) as a representative, the LCSHD method contributed to a record-high power factor (PF) of 45 μW cm−1 K−2 in polycrystals. Additionally, the dislocation tangle and low-angle grain boundary can be found in the LCSHD sample, producing low lattice thermal conductivity and a remarkable ZT value of 1.2. Benefiting from a reliable high ZT, we prepared a seven-pair Bi2Te3-based module, which displayed an extraordinary conversion efficiency of 6.4% and competitive refrigeration performance. In addition, a significant improvement of ZT value in other layered materials, including SnSe2 and SnSe, was also demonstrated. Our finding offers novel avenues for texture engineering, facilitating the design of high-performance layered thermoelectric materials.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.