Transferring compactness

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tom Benhamou, Jing Zhang
{"title":"Transferring compactness","authors":"Tom Benhamou,&nbsp;Jing Zhang","doi":"10.1112/jlms.12940","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate that the technology of Radin forcing can be used to transfer compactness properties at a weakly inaccessible but not strong limit cardinal to a strongly inaccessible cardinal. As an application, relative to the existence of large cardinals, we construct a model of set theory in which there is a strongly inaccessible cardinal <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math> that is <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-stationary for all <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$n\\in \\omega$</annotation>\n </semantics></math> but not weakly compact. This is in sharp contrast to the situation in the constructible universe <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math> being <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n+1)$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-stationary is equivalent to <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math> being <span></span><math>\n <semantics>\n <msubsup>\n <mi>Π</mi>\n <mi>n</mi>\n <mn>1</mn>\n </msubsup>\n <annotation>$\\mathbf {\\Pi }^1_n$</annotation>\n </semantics></math>-indescribable. We also show that it is consistent that there is a cardinal <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>⩽</mo>\n <msup>\n <mn>2</mn>\n <mi>ω</mi>\n </msup>\n </mrow>\n <annotation>$\\kappa \\leqslant 2^\\omega$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mi>κ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$P_\\kappa (\\lambda)$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-stationary for all <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>⩾</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\lambda \\geqslant \\kappa$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$n\\in \\omega$</annotation>\n </semantics></math>, answering a question of Sakai.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12940","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12940","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate that the technology of Radin forcing can be used to transfer compactness properties at a weakly inaccessible but not strong limit cardinal to a strongly inaccessible cardinal. As an application, relative to the existence of large cardinals, we construct a model of set theory in which there is a strongly inaccessible cardinal κ $\kappa$ that is n $n$ - d $d$ -stationary for all n ω $n\in \omega$ but not weakly compact. This is in sharp contrast to the situation in the constructible universe L $L$ , where κ $\kappa$ being ( n + 1 ) $(n+1)$ - d $d$ -stationary is equivalent to κ $\kappa$ being Π n 1 $\mathbf {\Pi }^1_n$ -indescribable. We also show that it is consistent that there is a cardinal κ 2 ω $\kappa \leqslant 2^\omega$ such that P κ ( λ ) $P_\kappa (\lambda)$ is n $n$ -stationary for all λ κ $\lambda \geqslant \kappa$ and n ω $n\in \omega$ , answering a question of Sakai.

传递紧凑性
我们证明,拉丁强迫技术可以用来把弱不可及但非强极限红心的紧凑性转移到强不可及红心。作为一个应用,相对于大红心的存在,我们构建了一个集合论模型,其中存在一个强不可及红心κ\ $kappa$,对于所有n∈ω\ $n\ in \omega$来说,它是n $n$ - d $d$-稳态的,但不是弱紧凑的。这与可构造宇宙 L $L$ 中的情况形成鲜明对比,在可构造宇宙 L $L$ 中,κ $kappa$ 是 ( n + 1 ) $(n+1)$ - d $d$ - 稳定的等价于 κ $kappa$ 是 Π n 1 $mathbf\ {Pi }^1_n$ - 不可描述的。我们还证明了,对于所有 λ ⩾ κ\ $lambda \geqslant \kappa$ 和 n∈ ω $n\in \omega$ 而言,存在一个红心数 κ ⩽ 2 ω $\kappa \leqslant 2^\omega$ 使得 P κ ( λ ) $P_\kappa (\lambda)$ 是 n $n$ - 稳定的,这一点是一致的,回答了 Sakai 的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信