Hongjuan Xu, Xiaoyun Bian, Hongxing Wang, Lin Huang, Xiaoxi Chen
{"title":"Akkermansia muciniphila postbiotic administration mitigates choline-induced plasma Trimethylamine-N-Oxide production in mice","authors":"Hongjuan Xu, Xiaoyun Bian, Hongxing Wang, Lin Huang, Xiaoxi Chen","doi":"10.1186/s13765-024-00905-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Trimethylamine-N-Oxide (TMAO) is believed to be linked to increased likelihood of cardiovascular disease. While probiotics have shown limited effectiveness in reducing TMAO levels, the potential of postbiotics remains underexplored. This study aimed to evaluate the impact of <i>Akkermansia muciniphila</i> (<i>A. muciniphila</i>) postbiotic administration on choline-induced TMAO production in mice by modifying the gut microbiota.</p><h3>Methods</h3><p>Female C57BL/6J mice were divided into six groups, including a control group, high-choline diet group, live <i>A. muciniphila</i> probiotic group, pasteurized <i>A. muciniphila</i> postbiotic group, sodium butyrate group, and sodium propionate group. Various measurements and analyses were conducted, including TMAO and TMA levels in serum, urine, and cecal contents, as well as the expression of FXR and FMO3 in liver tissues. Additionally, metabolic parameters, body weight, serum lipid profile, hepatic protein expression (FMO3, FXR, CutC, and CutD), and gut microbiota composition were assessed.</p><h3>Results</h3><p>Administration of <i>A. muciniphila</i> postbiotic significantly reduced choline-induced plasma TMAO levels in mice. Furthermore, improvements in serum lipid profiles and liver enzyme levels suggested potential enhancements in lipid metabolism and liver function. The study also observed modulation of specific proteins related to TMAO production and metabolism, including CutC and CutD.</p><h3>Conclusion</h3><p>The findings highlight the potential of <i>A. muciniphila</i> postbiotics as a dietary strategy for mitigating cardiovascular disease risk by modulating the gut-TMAO axis. Postbiotics, particularly <i>A. muciniphila</i>, offer advantages over probiotics and warrant further investigation for their therapeutic applications in gastrointestinal and metabolic disorders.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00905-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00905-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Trimethylamine-N-Oxide (TMAO) is believed to be linked to increased likelihood of cardiovascular disease. While probiotics have shown limited effectiveness in reducing TMAO levels, the potential of postbiotics remains underexplored. This study aimed to evaluate the impact of Akkermansia muciniphila (A. muciniphila) postbiotic administration on choline-induced TMAO production in mice by modifying the gut microbiota.
Methods
Female C57BL/6J mice were divided into six groups, including a control group, high-choline diet group, live A. muciniphila probiotic group, pasteurized A. muciniphila postbiotic group, sodium butyrate group, and sodium propionate group. Various measurements and analyses were conducted, including TMAO and TMA levels in serum, urine, and cecal contents, as well as the expression of FXR and FMO3 in liver tissues. Additionally, metabolic parameters, body weight, serum lipid profile, hepatic protein expression (FMO3, FXR, CutC, and CutD), and gut microbiota composition were assessed.
Results
Administration of A. muciniphila postbiotic significantly reduced choline-induced plasma TMAO levels in mice. Furthermore, improvements in serum lipid profiles and liver enzyme levels suggested potential enhancements in lipid metabolism and liver function. The study also observed modulation of specific proteins related to TMAO production and metabolism, including CutC and CutD.
Conclusion
The findings highlight the potential of A. muciniphila postbiotics as a dietary strategy for mitigating cardiovascular disease risk by modulating the gut-TMAO axis. Postbiotics, particularly A. muciniphila, offer advantages over probiotics and warrant further investigation for their therapeutic applications in gastrointestinal and metabolic disorders.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.