{"title":"Exit wave reconstruction of a focal series of images with structural changes in high-resolution transmission electron microscopy","authors":"Xiaohan Zhang, Shaowen Chen, Shuya Wang, Ying Huang, Chuanhong Jin, Fang Lin","doi":"10.1111/jmi.13335","DOIUrl":null,"url":null,"abstract":"<p>High-resolution transmission electron microscopy (HRTEM) images can capture the atomic-resolution details of the dynamically changing structure of nanomaterials. Here, we propose a new scheme and an improved reconstruction algorithm to reconstruct the exit wave function for each image in a focal series of HRTEM images to reveal structural changes. In this scheme, the wave reconstructed from the focal series of images is treated as the initial wave in the reconstruction process for each HRTEM image. Additionally, to suppress noise at the frequencies where the signal is weak due to the modulation of the lens transfer function, a weight factor is introduced in the improved reconstruction algorithm. The advantages of the new scheme and algorithms are validated by using the HRTEM images of a natural specimen and a single-layer molybdenum disulphide. This algorithm enables image resolution enhancement and lens aberration removal, while potentially allowing the visualisation of the structural evolution of nanostructures.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13335","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution transmission electron microscopy (HRTEM) images can capture the atomic-resolution details of the dynamically changing structure of nanomaterials. Here, we propose a new scheme and an improved reconstruction algorithm to reconstruct the exit wave function for each image in a focal series of HRTEM images to reveal structural changes. In this scheme, the wave reconstructed from the focal series of images is treated as the initial wave in the reconstruction process for each HRTEM image. Additionally, to suppress noise at the frequencies where the signal is weak due to the modulation of the lens transfer function, a weight factor is introduced in the improved reconstruction algorithm. The advantages of the new scheme and algorithms are validated by using the HRTEM images of a natural specimen and a single-layer molybdenum disulphide. This algorithm enables image resolution enhancement and lens aberration removal, while potentially allowing the visualisation of the structural evolution of nanostructures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.